Autonomic Nervous System

- Assess Prof. Fawzia Al-Rouq
- Department of Physiology
- College of Medicine
- King Saud University

Neurotransmitters & Receptors Of Autonomic NS

Introduction

- ANS is the subdivision of the peripheral nervous system that regulates body activities that are generally *not under conscious control*
- *Visceral motor* innervates *non-skeletal* (*non-somatic*) *muscles*
- Composed of a special group of neurons serving:
 - Cardiac muscle (the heart)
 - Smooth muscle (walls of viscera and blood vessels)
 - Internal organs
 - Skin

Sympathetic

Innervation of Visceral Targets

- Short, lightly myelinated preganglionic neurons
- Long, unmyelinated postganglionic neurons
- Ganglia close to spinal cord

Parasympathetic Innervation of Visceral Targets

- Ganglia close to or on target organs
- Preganglionic neurons long
- Post ganglionic neurons short

SYMPATHETIC & PARASYMPATHETIC NERVOUS SYSTEM ORIGIN

Blue= Para symp; Red symp

Sympathetic - Origin

• Thoracolumbar lateral horns of the spinal segments T1-L2.

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Parasympathetic - Origin

- Craniosacral Cell bodies of the motor nuclei of the cranial nerves III, VII, IX and X in the brain stem
- Second, third and fourth [S2-S4] sacral segments of the spinal cord
- Nerve fibers emerge from brain &
- sacrum cranio-sacral outflow

Copyright @2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

PHYSIOLOGICAL FUNCTIONS OF THE AUTONOMIC NERVOUS SYSTEM

THE AUTONOMIC NERVOUS SYSTEM

SubdivisNervesLocation ofChemicalGeneralionEmployedGangliaMessengerFunction

SympathThoracolumAlongsideNorepinephFight oreticbarvertebralrineflightcolumncolumncolumncolumn

ParasymCraniosacralOn or nearAcetylcholiConservatipathetican effectorneon of bodyorganenergy

PHYSIOLOGICAL FUNCTIONS OF THE AUTONOMIC NERVOUS SYSTEM

The Autonomic Nervous System

Structu Sympathetic Stimulation Parasympathetic Stimulation re Iris (eye **Pupil dilation Pupil constriction muscle**) Saliva production Salivary Saliva production increased Glands reduced **Oral/Na Mucus production Mucus production increased** sal reduced **Mucosa** Heart rate and force **Heart rate and force** Heart increased decreased **Bronchial muscle Bronchial muscle contracted** Lung relaxed

The Autonomic Nervous System		
Structure	Sympathetic Stimulation	Parasympathetic Stimulation
Stoma ch	Peristalsis reduced	Gastric juice secreted; motility increased
Small Intes	Motility reduced	Digestion increased
Large Intes	Motility reduced	Secretions and motility increase
Liver	Increased conversion of glycogen to glucose	
Kidney	Decreased urine secretion	Increased urine secretion
Adrenal medulla	Norepinephrine and epinephrine secreted	
Bladder	Wall relaxed Sphincter closed	Wall contracted Sphincter relaxed

MECHANISM OF ACTIONS The neurotransmitters & receptors of Autonomic NS

OBJECTIVES

OBJECTIVES

- describe neurotransmitters that can release at pre and post ganglionic of Autonomic NS.
- Describe Autonomic NS receptors.

ANS Neurotransmitters: Classified as either cholinergic or adrenergic neurons based upon the neurotransmitter released

Sympathetic Neurotransmitters

- Preganglionic neurons -
- Cholinergic = (release acetylcholine)
- Postganglionic neurons:
 - release norepinepherine at target organs
 - ie. Adrenergic

Parasympathetic Neurotransmitters

• Pre & Postganglionic neurons release acetylcholine = Cholinergic

RECEPTORS

Parasympathetic nervous system acts on two types of receptors: muscarinic and nicotonic choloinergic receptors. □ Most transmissions occur in two stages: When stimulated, the preganglionic nerve releases ACh at the ganglion, which acts on nicotinic receptors of the □ The postganglionic nerve then releases ACh to stimulate the muscarinic receptors of the target organ.

TYPES OF MUSCARINIC RECEPTORS

Three main types of muscarinic receptors:M1,M2&M3

- •M1 at neural system.
- •M2 at heart.

•act to bring the heart back to normal after the actions of the sympathetic nervous system: slowing down the heart rate, reducing contractile forces of the atrial cardiac muscle, and reducing conduction velocity of the SA and AV node.

•Note, they have no effect on the contractile forces of the ventricular muscle.

TYPES OF MUSCARINIC RECEPTORS

- •M3 at many places in the body, such as
- •smooth muscles of the blood vessels> cause vasoconstriction
- lungs> cause bronchioconstriction
- •smooth muscles of the GIT > help in increasing intestinal motility and dilating sphincters.
- **many glands** that help to stimulate secretion in salivary glands and other glands of the body.

The Sympathetic NS Acts on tow types of receptors : \Box α and β .

Types of α-adrenergic receptor

- Two types:
- \Box **\alpha1**, found in smooth muscle, heart, and liver, with effects including vasoconstriction, intestinal relaxation, uterine contraction and pupillary dilation,

$\Box \alpha 2$

- platelets >platelet aggregation
- vascular smooth muscle > vasoconstriction
- nerve termini > inhibition of norepinephrine
- pancreatic islets > inhibition of insulin secretion.
- \Box **\alpha-adrenergic receptors** >respond to <u>norepinephrine</u> and to blocking agents as <u>phenoxybenzamine</u>.

β-receptor types

- There are three known types of beta receptor, designated β_1 , β_2 and β_3 .
- β₁-Adrenergic receptors are located mainly in the heart.
- β₂-Adrenergic receptors are located mainly in the lungs, gastrointestinal tract, liver, uterus, vascular smooth muscle, and skeletal muscle.
- β_3 -receptors are located in fat cells.
- $\Box \ \beta-adrenergic \ receptors \ respond \ particularly \ to \ epinephrine \ and \ to \ such \ blocking \ agents \ as \ propranolol.$

- Most of viscera receive nerve fibers from both parasympathetic and sympathetic divisions
- Both divisions do not normally innervate an organ equally

Chemical or neural transmitter

- All preganglionic fibers release acetylcholin (Ach).
- All parasympathetic postganglionic release Ach.
- All sympathetic postganglionic release noradrenalin except sweat glands & bl vessels to skeletal muscles

Adrenergic Receptors

- The two types of adrenergic receptors are alpha and beta
- Effects of NE binding to:
 - $-\alpha$ receptors is generally stimulatory
 - $-\beta$ receptors is generally inhibitory
- A notable exception NE binding to β receptors of the heart is stimulatory

<u>Activation</u> of α receptors leads to smooth muscle <u>contraction</u>

<u>Activation</u> of β_2 receptors leads to smooth muscle <u>relaxation</u>

<u>Activation</u> of β_1 receptors leads to smooth muscle <u>contraction</u> (especially in heart)

Cholinergic Receptors

- The two types of receptors that bind ACh are nicotinic and muscarinic
- These are named after drugs that bind to them and mimic ACh effects

