

Structure And Function Of Hemoglobin

Forms of Hemoglobin

R-form (Relaxed)	T-form (Taut or tense)
The oxygenated form of Hb	The deoxy (without ${\rm O_2}$) form of Hb
High-oxygen-affinity	Low-oxygen-affinity
The dimers have more freedom of movement	The movement of dimers is constrained

Types of Hemoglobin

Hemoglobin A (HbA)

Major Hb in adults

<u>Composed of four polypeptide chains:</u>

Two α and two β chains

Contains two dimers of $\alpha\beta$ subunits which are held together by non-covalent interactions

Each chain is a subunit with a heme

group in the center that carries oxygen A Hb molecule contains 4 heme groups and carries 4 moelcules of O₂

Fetal Hemoglobin (HbF)

Major hemoglobin found in the fetus and newborn

Tetramer with two α and two γ chains
Higher affinity for O₂ than HbA

placenta

O₂ than HbA

Transfers O₂ from maternal to fetal circulation across

HbA₂

Appears ~12 weeks after birth

Constitutes ~2% of

total Hb

<u>Composed of two α</u>

<u>and two δ globin</u>

chains

plasma glucose levels HbA1c levels are high in patients

with diabetes

mellitus

HbA_{1c}

HbA undergoes non-enzymatic glycosylation

Glycosylation

depends on

Factors affecting oxygen binding* (allosteric effectors)

 pO_2 (partial pressure of

pH of the environment

pCO₂ (partial pressure of carbon dioxide)

Availability of 2,3 bisphosphoglycerate

OXYGEN DISSOCIATION CURVE

- ☐ The curve is sigmoidal¹ (s-shaped)
- Indicates cooperation of subunits in O₂ binding
- Binding of O_2 to one heme group increases O_2 affinity of others
- ☐ Heme-Heme interaction²
- *: About 97% of oxygen transported in the blood is bound to hemoglobin.
- 1. The sigmoidal curve reflect structural changes that are initiated at one heme group and transmitted to other heme groups in the Hb tetramer
- 2. The affinity of Hb for the last 0₂ bound is about 300 times greater than its affinity for the first 0₂ bound

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

- ✓ It is the pressure at which Hb is 50% saturated with O₂
- ✓ Indicates affinity of Hb to O₂
- ☐ High affinity \rightarrow slow unloading of O_2 .
 ☐ Low affinity \rightarrow fast unloading of O_2 .

 (inverse proportion).
- Lung pO₂ is 100 mm → Hb saturation 100%
 Tissue pO₂ is 40 mm → Hb saturation reduces.

- => Hence O_2 is delivered to tissues. \square P_{50} of hemoglobin = 26-28 mm Hg)

Availability of 2,3 bisphosphoglycerate

Binds to deoxy-hb and stabilizes the T-form When oxygen binds to Hb, BPG is released

$$HbO_2$$
 + 2,3-BPG $\stackrel{\textstyle >}{\leftarrow}$ $Hb-2,3$ -BPG + O_2 oxyhemoglobin deoxyhemoglobin

Copyright @ 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

Factors that shift the curve to the LEFT (Increase Hb affinity to O_2)

High altitude & O₂ affinity

In hypoxia and high altitude:

- □ 2,3 BPG levels rise
- ☐ This decreases O₂ affinity of Hb Thus increases O₂ delivery to tissues

- Causes of high O₂ affinity
- → Alkalosis
- ☐ High levels of Hb F
- Multiple transfusion of 2,3 DPG-depleted blood

^{*:} Decreased PH means increased release of H+

The Bohr effect

Effect:

- removes insoluble CO2 from blood stream
 - Produces soluble bicarbonate

Definition:

Effect of pH and pCO2 on:

- Oxygenation of Hb in the lungs
- Deoxygenation of Hb in tissues

Tissues have lower pH (acidic) than lungs due to proton generation:

$$CO_2 + H_2O \rightarrow HCO_3^- + H^+$$

Protons reduce O₂
affinity of Hb
=> Shift to the right

The free Hb binds to two protons.

Protons are released and react with HCO³ - to form CO₂ gas

$$(HCO_3^+ + H^+ \rightarrow CO_2 + H_2O)$$

The proton-poor Hb now has greater affinity for O_2 (in lungs)

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

Abnormal hemoglobin:

Unable to transport O₂ due to abnormal structure

Carboxy-Hb:

CO replaces O_2 and binds 200X tighter than O_2 (in smokers)

Met-Hb:

Contains oxidized Fe³⁺ (~2%) that cannot carry O₂

Sulf-HB:

Forms due to high sulfur levels in blood

(irreversible reaction)

Hemoglobin Effects of O₂ binding Hemoglobin structure Allosteric effectors carbon monoxide binds binds exists as composed of Deoxyhemoglobin or Oxyhemoglobin Four O₂ Deoxy form Carbon monoxide (CO) (T form) (R form) cooperatively (deoxyhemoglobin, T form) Different relative positions of subunits characterized by leads to preferentially characterized by characterized by binds Heme-heme Carboxy-Allosteric modifiers Low O₂ affinity High O₂ affinity interaction hemoglobin Hydrogen ion (H+) Constrained More freedom leads to 2,3-Bisphosphoglycerate characterized by of movement structure CO2 First O₂ binding High affinity for CO with low affinity leads to (displaces O₂) Four subunits leads to composed of leads to Stabilization of the T state Two types Transition from Stabilization of T to R state leads to composed of the R state leads to leads to α Subunits **β Subunits** Decreased affinity for O2 composed of composed of Next three "Left-shift" of O2 O2 binding with leads to increasing affinity saturation curve α Chains **B** Chains Heme Heme leads to leads to "Right-shift" in O2 composed of saturation curve Sigmoid O₂ Hyperbolic O₂ Protobinding curve saturation curve porphorphyrin IX Fe⁺⁺

1) The form of Iron that is bound to hemoglobin is: A- Ferric iron	5) 2,3 bisphosphoglycerate binds to Hb in the form of: A- Oxyhemoglobin
B- Ferrous iron	B- Deoxy-hemoglobin
C- Ferritin	C-Fetal Hb
D- All of them	D- None of them
2) Which ONE of the following statements is true about the	6) What do we expect to see in the CBC of a patient from ABHA:
T-form of hemoglobin :	A- High levels of hemoglobin
A- Relaxed-form	B-Low O ₂ affinity
B- Oxygenated-form of Hb	C- Decreased RBCs
C- Have freedom of movement.	D- Low levels of 2,3 bisphosphoglycerate
D- Low oxygen affinity	7) Which ONE of the following replaces 02 and binds 200X
3) HbA2 is composed of :	tighter than 02
A- two α and two γ chains	A-Met hemoglobin
B- two α and two δ globin chains	B- Carboxy-hemoglobin
G - four α globin chains	C- Sulf-hemoglobin
D-Two α and two β chains	D- Fetal hemoglobin
4) Which ONE of the following cause shift of 0_2 dissociation	8) Which of the following result from Bohr effect:
curve to the left	A- Removes insoluble CO2 from blood stream
A- Increased H ⁺	B- Produces soluble bicarbonate
B- High PH	C- Produce CO2 to the blood stream
C- Increased 2,3 BPG	D- A&B
D- Increased P ₅₀	
Answ	vers: 1) B 2) D 3) B 4) B 5) B 6) A 7) B 8) D

Thank You!

Done by:

Khaled alsuhaibani Mohammed Alnafisah Basmah aldeghaither Ziyad Alajlan