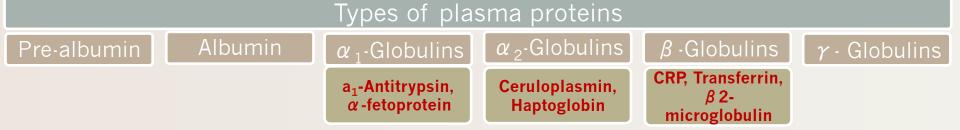


Plasma Proteins


OVERVIEW:

- Functions and characteristics of plasma proteins
- Measurement of plasma proteins and diagnosis of diseases
- Electrophoretic patterns of plasma proteins
- Acute phase proteins

Biochemistry433@hotmail.com

Plasma contains >300 different proteins **1-Quantitative measurement** Measurement Many pathological conditions affect level of of a specific protein: plasma proteins Mostly synthesized in the liver **Chemical or immunological** 0 reactions Some are produced in other sites 2-Semiguantitative • A normal adult contains ~70 g/L of pps measurement by electrophoresis: **Plasma Proteins (pps)** Proteins are separated by of antitrypsin, TBG. 0 transcortin, etc their electrical charge in haptoglobin, ceruloplasmin, **Transport** (Albumin, Prealbumin, 0 electrophoresis Functions a2 macroalobulin Globulins) Five separate bands of 0 transferrin. Maintain plasma oncotic pressure 0 proteins are observed β lipoprotein antibodies (Albumin) These bands change in 0 **Defense** (Immunoglobulins and 0 disease albumin 🕮 🗠 complement) **Clotting and fibrinolysis** (Thrombin and 0 plasmin)

1) Prealbumin (Transthyretin)

- A <u>Transport Protein</u> for:
 - Thyroid hormones
 - Retinol (vitamin A)
- Migrates faster than Albumin in Electrophoresis
- Separated by <u>Immunoelectrophoresis</u>
- Lower levels found in:
 - a) Liver disease
 - b) Nephrotic Syndrome
 - c) Acute Phase Inflammatory Response
 - d) Malnutrition
- Short half-life (2 days)

2) Albumin

- Most abundant plasma protein (~40 g/L) in normal adult
- It is synthesized in the Liver as PreProAlbumin & secreted as Albumin
- **Decreases** rapidly in <u>Injury</u>, <u>Infection</u> and <u>Surgery</u>
- Half-life in Plasma is 20 days

Functions

- Maintains 80% of plasma Oncotic pressure
- The Osmotic pressure exerted by plasma proteins that pulls water into the circulatory system maintains fluid distribution in and outside cells and plasma volume
- **A non-specific carrier** of: Hormones, Ca , FFA, Drugs, etc.
- Tissue cells can take up Albumin by **Pinocytosis** where it is hydrolyzed to AA.
- Useful in treatment of:
 - 1) Liver Diseases
 - 2) Hemorrhage
 - 3) Shock
 - 4) Burns

Electrophoresis: The separation of ionic solutes based on differences in their rates of migration in an applied electric field.

Causes:

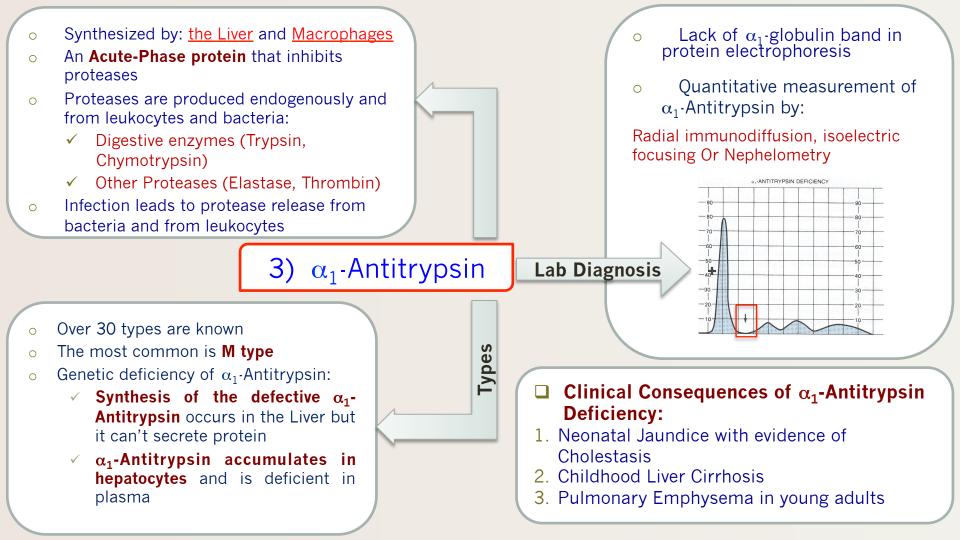
- **Decreased albumin** 0 synthesis
- Liver cirrhosis
- 11. Malnutrition
- Increased losses of 0 Albumin
- Increased catabolism in 1. Infections
- Excessive excretion by the 11. Kidneys (Nephrotic syndrome)
- 111. Excessive loss in bowel (bleeding)
- IV. Severe burns (plasma loss in the absence of skin barrier)

Effects:

Edema due to low oncotic 0 pressure

- Albumin level drops in liver Ι. disease causing low oncotic pressure
- 11. Fluid moves into the interstitial spaces causing edema
- **Reduced transport of** 0 drugs and other substances in plasma
- **Reduced protein-bound** 0 calcium
- Total plasma Ca level drops 11. Ionized Ca level may
 - remain normal

HYPERalbuminia

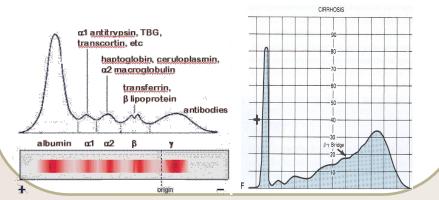

No clinical conditions are known that cause the liver to produce large amounts of Albumin

Albumi

The only cause is: **Dehydration**

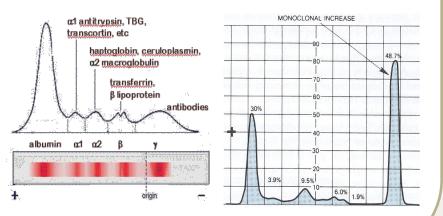
HYPOalbuminemia

١.


	4) <u>α-Fetoprotein (AFP)</u>	5) <u>Ceruloplasmin</u>	6) <u>Haptoglobin</u>
Synthesized in	 The developing Embryo and Fetus by the parenchymal cells of the Liver 	∘ the Liver	∘ the Liver
Function	 <u>Function is unknown</u> but it may protect fetus from immunologic attack by the mother <u>No known physiological function in adults</u> AFP levels ↓ gradually during intra-uterine life and reach adult levels at birth AFP is a tumor marker for: Hepatoma and Testicular Cancer 	 Contains >90% of serum copper An oxidoreductase that inactivates ROS causing tissue damage in <u>Acute Phase Response</u> Important for iron absorption from the intestine 	 Binds to free hemoglobin to form complexes that are metabolized in the rES Limits Iron losses by preventing Hb loss from Kidneys.
Imbalances	 ↑ Maternal AFP levels are associated with: ✓ Neural tube defect ✓ Anencephaly ↓ Maternal AFP levels are associated with: ✓ ↑ Risk of Down's Syndrome. 	 Wilson's disease: Due to low plasma levels of Ceruloplasmin Copper is accumulated in the Liver and Brain. 	 ↓ Plasma level during Hemolysis

	7) <u>Transferrin</u>	8) <u>β2–Microglobulin</u>	9) <u>C-Reactive Protein (CRP)</u>
Features	 A major iron-transport protein in plasma (30% saturated with iron) A negative acute phase protein 	 Component of HLA Present on the surface of lymphocytes and most nucleated cells Filtered by the Renal Glomeruli due to its small size but most (>99%) is reabsorbed. May be a tumor marker for: Leukemia Lymphomas multiple myeloma 	 An acute-phase protein synthesized by the Liver Important for phagocytosis A marker for: ✓ Ischemic Heart Disease (IHD)
Imbalances	 Plasma level drops in: Malnutrition Liver disease Inflammation Malignancy Iron deficiency in increased Hepatic synthesis. 	 Elevated serum levels are found in Overproduction in disease 	 High plasma levels are found in many inflammatory conditions such as Rheumatoid Arthritis.

HLA: human leukocyte antigen

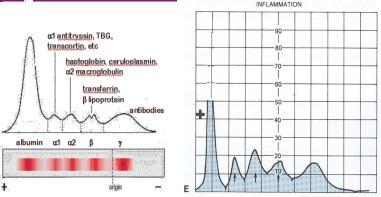

Hypergammaglobulinemia

- May result from stimulation of:
 - ✓ B cells (Polyclonal
 - Hypergammaglobulinemia)
 - Monoclonal proliferation (Paraproteinemia)
- Polyclonal Hypergammaglobulinemia:
 - Stimulation of many clones of **B cells** produce a wide range of antibodies
 - γ-globulin band appears large in Electrophoresis.
 - Clinical conditions: Acute & Chronic Infections, autoimmune diseases, Chronic Liver Disease

<u>Monoclonal</u> <u>Hypergammaglobulinemia</u>

- Proliferation of a single B-cell clone produces a single type of lg
- Appears as a separate dense band (Paraprotein or M band) in Electrophoresis
- Paraproteins are characteristic of malignant Bcell proliferation
- Clinical condition: Multiple Myeloma

Negative Acute Phase Proteins


- <u>Albumin</u>, <u>prealbumin</u>, <u>transferrin</u> **DECREASE** in inflammation
- o Mediated by inflammatory response via cytokines and hormones
- Synthesis of these proteins decrease to save amino acids for positive acute phase proteins

Positive Acute Phase Proteins

- o Examples: <u>α1-Antitypsin</u>, <u>Haptoglobin</u>, <u>Ceruloplasmin</u>, <u>Fibrinogen</u>, <u>C-Reactive Protein</u>
- Plasma protein levels INCREASE in:
 - \checkmark Infection
 - ✓ Inflammation
 - ✓ Malignancy
 - ✓ Trauma
 - ✓ Surgery
- These proteins are called Acute Phase Reactants
- Synthesized due to body's response to injury
- Mediators cause these proteins to increase after injury
- \circ Mediators: Cytokines (IL-1, IL-6), Tumor Necrosis Factors α & β , Interferons, Platelet Activating Factor

General Functions:

- 1) Bind to Polysaccharides in bacterial walls
- 2) Activate Complement System
- 3) Stimulate Phagocytosis

1) Which of the following is the function of Haptoglobin?

- A. Preventing loss of iron
- B. Inhibits proteases
- C. Maintains oncotic pressure
- D. Antibodies
- 2) A patient has Hepatoma, which one of the following will increase?
 - **Α.** β2-microglobulin
 - **B.** α-fetoprotein
 - C. Gamma globulin
 - D. Ceruloplasmin
- 3) A pregnant women has an increase level of α -Fetoprotein, that mean the fetus may have?
 - A. Williams syndrome
 - B. Down's syndrome
 - C. Spina bifida
 - D. Fetal alcohol syndrome
- 4) A patient has rheumatoid arthritis which one of the following will increase?
 - A. Prealbumin
 - B. Albumin
 - C. C-Reactive protein
 - D. Ceruloplasmin

- 5) A patient has Nephrotic Syndrome, which one of the following will decease?
 - A. Prealbumin
 - B. Ceruloplasmin
 - **C.** β **2-microglobulin**
 - D. C-Reactive protein

6) Which one of the following is a Major iron-transport protein?

- A. Transferrin
- B. Haptoglobin
- C. Ceruloplasmin
- D. Gamma globulin
- $\Delta \alpha_1$ -Antitrypsin Deficiency may cause?
 - A. Restrictive lung disease
 - B. Emphysema
 - C. Recurrent infections
 - D. Ischemic heart disease

Answers: 1) A 2) B 3) C 4) C 5) A 6) A 7) B

Thank You!

Done by: AlAnoud AlBegami Basmah AlDeghaither Felwa AlHarthi Abdulrahman AlThaqib Mohammad AlNafisa