

CASE4: Pale and tired

Learning issues:

- ✓ Structure and function of RBCs
- ✓ Structure and functions of normal hemoglobin (HbA2). Other types of hemoglobin and physiological differences
- ✓ Development of RBCs and physiological factors needed for normal development in the bone marrow
- ✓ Physiology and metabolism of iron
- ✓ Mechanisms by which anemia may develop
- ✓ Pathogenesis of beta thalassaemia major. Differences between major and intermedia
- ✓ Interpretation of the patient symptoms, signs and investigation results
- ✓ A brief management plan showing management goals and management options

- •MALE
- •7 years old
- Always tired *
- •Pale *
- •Does not participate in any physical education classes
- Used to be active
- •Short of breath *
- •Declined activity over the last (10-12) months

HISTORY:

- No bronchial asthema
- No history of blood loss
- No blood transfusion
- No previous hospital admission
- •Born in small village in Jeezan
- His mother was not seen by a doctor during pregnancy
- No allergies
- Decline in his school preformance in most subjects

Family History: His half-brother is always ill and needs blood transfusion nearly every month. (it's usually associated with hemolysis).

Examination:

- * Pale, no skeletal mucsle problems, vital signs are normal EXCEPT for increased pulse rate (TACHYCARDIA)
- * NORMAL CVS , NORMAL RESPIRATORY SYSTEM
- * NORMAL ABDOMINAL EXAMINATION

Blood tests:

Blood test	Aymen's results	Normal range
НВ	78	130-170 g/L
MCV	78	83-101 fL
MCH	26	27-32 pg
Platelets count	200	150-400 x 10%L

Because of the low MCV, MCH, and presence of microcytic hypochromic RBCs Doctor: decided to do further tests to confirm Iron-deficiency anemia

Blood test	Aymen's results	Normal range
Serum iron	31	9-30 mmol/L
Serum ferritin	120	10-120 mg/L
Serum transferrin	2.5	2.0-4.0 g/L

Blood film report:

Aymen's blood film shows:

- Hypochromasia (RBCs are paler than normal cells)
- -Microcytosis (RBCs are smaller than normal cells)
- -Polychromasia (RBCs tend to be stained with acid and basic days)
- -Target cells (RBCs with a dark center surrounded by a light band that again is encircled by a darker ring)
- -Anisocytosis (significant variations in the size of RBCs)

Doctor arrange for (haemoglobin electrophoresis) to identifying the exact cause of the anemia

Haemoglobin type	Aymen's result	% of total haemoglobin
Hb A	52%	Over 95%
Hb A2	7%	2-3%
Hb F	41%	Less than 1%
Hb S	Absent	Absent
Other abnormal Hb	Absent	Absent

hemoglobin
electrophoresis test is
a blood test done to
evaluate the different
types of hemoglobin in
the bloodstream

Diagnosis:

Beta Thalassaemia intermedia (Anemia due to an inherited blood condition)

Intermedia because:

1-Hb in the range of 7.5-8.5 g/dL without the need for blood transfusion
 2-Presented at relatively later age (7 years old)
 3-Blood changes are not severe → he will not need blood transfusion except on the presence of severe infection or hyper active spleen destroying the RBCs

Structure and function of RBC

- -small and biconcave in shape
- -they lack a nucleus
- -contain hemoglobin

The most important function of red blood cells is the transport of oxygen.

Structure of hemoglobin

- Major Hb in adults.
- Composed of Two α and two β chains
- chain is a subunit with a heme group in the center that carries oxygen.

HbA (97%)

HbA₂ (2%)

- Appears ~12 weeks after birth
- two α and two δ globin chains

- Major hemoglobin found in the fetus and newborn
- two α and two γ chains
- Transfers O₂ from maternal to fetal circulation across placenta

HbF (1%)

$\mathsf{HbA}_{\mathsf{1c}}$

 HbA1c levels are high in patients with diabetes mellitus

Thalassemia

β-Thalassemia

α-Thalassemia

The condition in involving β -thalassemia is one of 2 categories : (molecular classification)

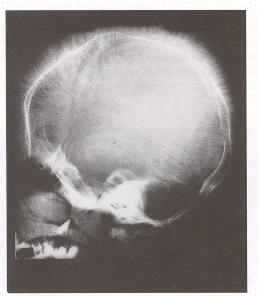
Beta0: the synthesis of Beta globin is

completely lost.

Beta+: the synthesis of Beta globin is partially

decreased.

Deletion involving one or more of α -globin genes.


Clinical classification of β-Thalassemia

Туре	Clinical features	interme
β-Thalassemia major	Severe anemia Regular blood transfusion required	at later case)
β-Thalassemia intermedia	Severe anemia Regular blood transfusion is not req	uired
β-Thalassemia minor	Asymptomatic, mild or absent anen	nia

The onset of thalassemia major is at early life nearly at birth while thalassemia intermedia appears at later age (As in the case)

Signs and symptoms

- *Pallor
- *Jaundice (because of hemolysis)
- *Apathy and Anorexia
- *Failure to Thrive
- *Hepato-splenomegaly
- *Skeletal Deformity (Hair end appearance under x-ray)
- *Iron Overload mainfestations.

hair-like projection (as a result of skeletal deformity)

Hemoglobin electrophoresis for Beta thalassemia:

B-thalassemia type	HbA	HbA2	HbF
major	0	1.5-5.9	More than 94
Intermedia	Present	5.4-10	30-73
Minor	More than 90	3.5-8	1-2

Questions

Q2: what is the diagnose in ayman case and what is the causes of it?

(tiredness – pallor - decrease in physical activity)

because RBC's are not normal so less oxygen will be

carried to tissues leading to increase heart rate to

Q5: 'target cell' is an important finding in aymn

Q7: Tiredness, pallor and shortness of breath are

Q3: why he has shortness of breath and

compensate the oxygen loss.

tachycardia?

blood film, why?

signs for what?

Anemia

It's indicate thalassaemia

blood film

need's.

similar to each other.

Q8: What does anemia mean?

He have thalassemia (microcytic hypochromic

Q4: What are the tests you will order in this case?

-Complete blood count, hemoglobin electrophoresis,

-Serum transferrin, ferritin, Fe Binding Capacity (Iron

Because iron deficiency anemia and thalassemia are

Mean less than normal hemoglobin and RBC's are unable to carry oxygen in a way to cover all body

animia), due to an inherited blood condition

studies to exclude iron deficiency anemia)

Q6: Why CBC is not enough in this case?

Cor to had to the goal or long term blood translation.	transfusion ?
To maintain the patient's hemoglobin level at 9-10 g/dL.	because it is intermedia (Hb in the range of 7.5-8.5 g/dL) and Blood changes are not severe
Q11: what is the difference between Iron-deficiency anemia and Thalassaemia ?	Q12: after Exclude the Iron-deficiency anemia, What is the test that doctor should decided to do to identifying the cause of the anemia?
Thalassemia: an inherited disorder caused by mutation that decrease the synthesis of α or β -globin chains (completely or partially missed) Iron-deficiency anemia: most common, with low Serum iron, low Serum ferritin And low Serum	hemoglobin electrophoresis test

Q10: in this case, why he is not need the blood

transferrin Both are microcytic hypochromic anemia type Q13: What is hemoglobin electrophoresis? case?

O9: What is the goal of long-term blood transfusion?

Q14: what is the Clinical Manifestations in this

Pallor, jaundice, Hepato-splenomegaly, Skeletal test is a blood test done to evaluate the different types Deformity, Iron Overload mainfestations of hemoglobin in the bloodstream

DONE BY:

Amani Alotaibi Yara Abdullah Rawan Alotaibi Sara Alseneidi Nada Bindawood

REVISED BY:

Alaa Alharbi

