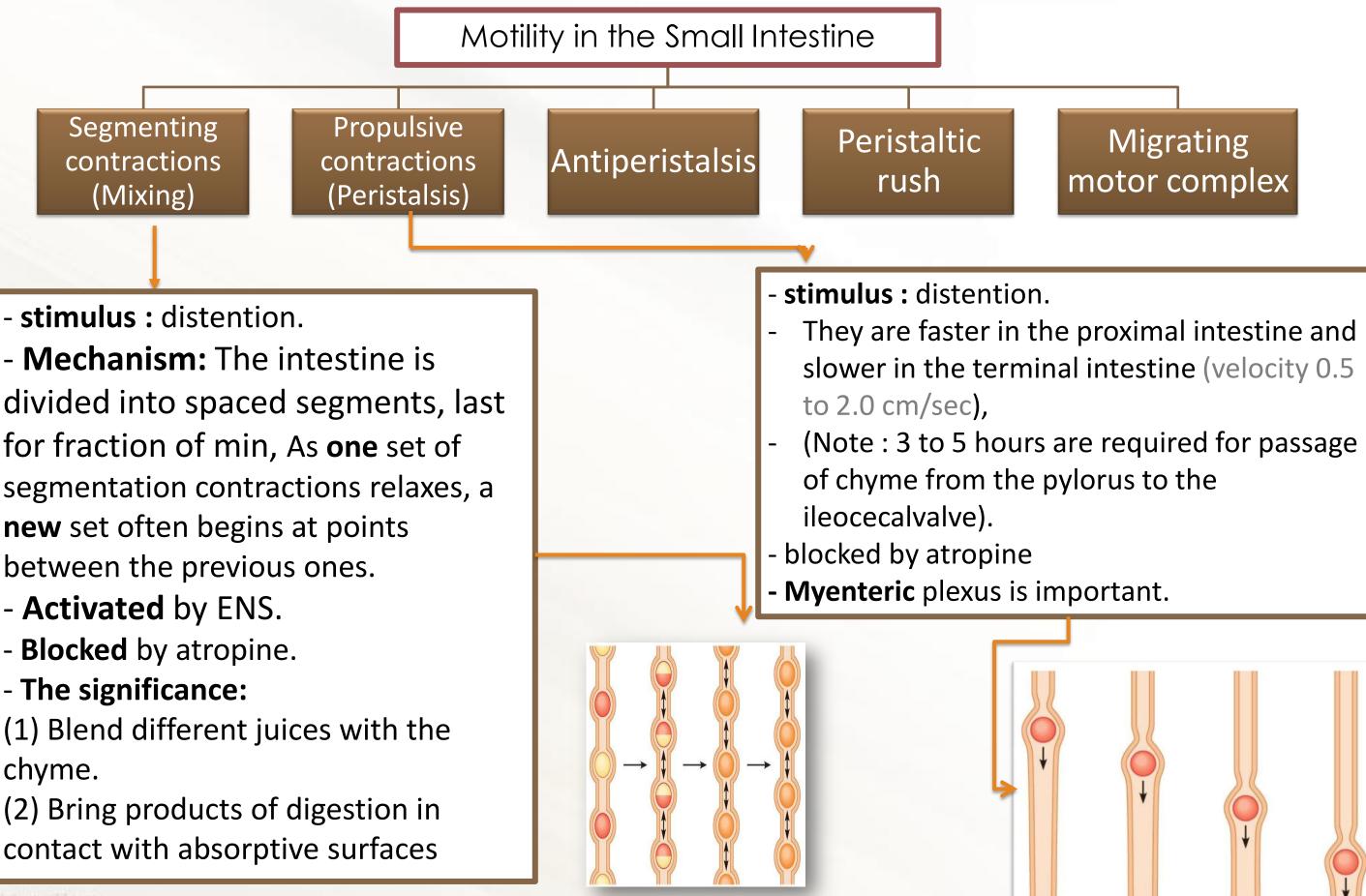
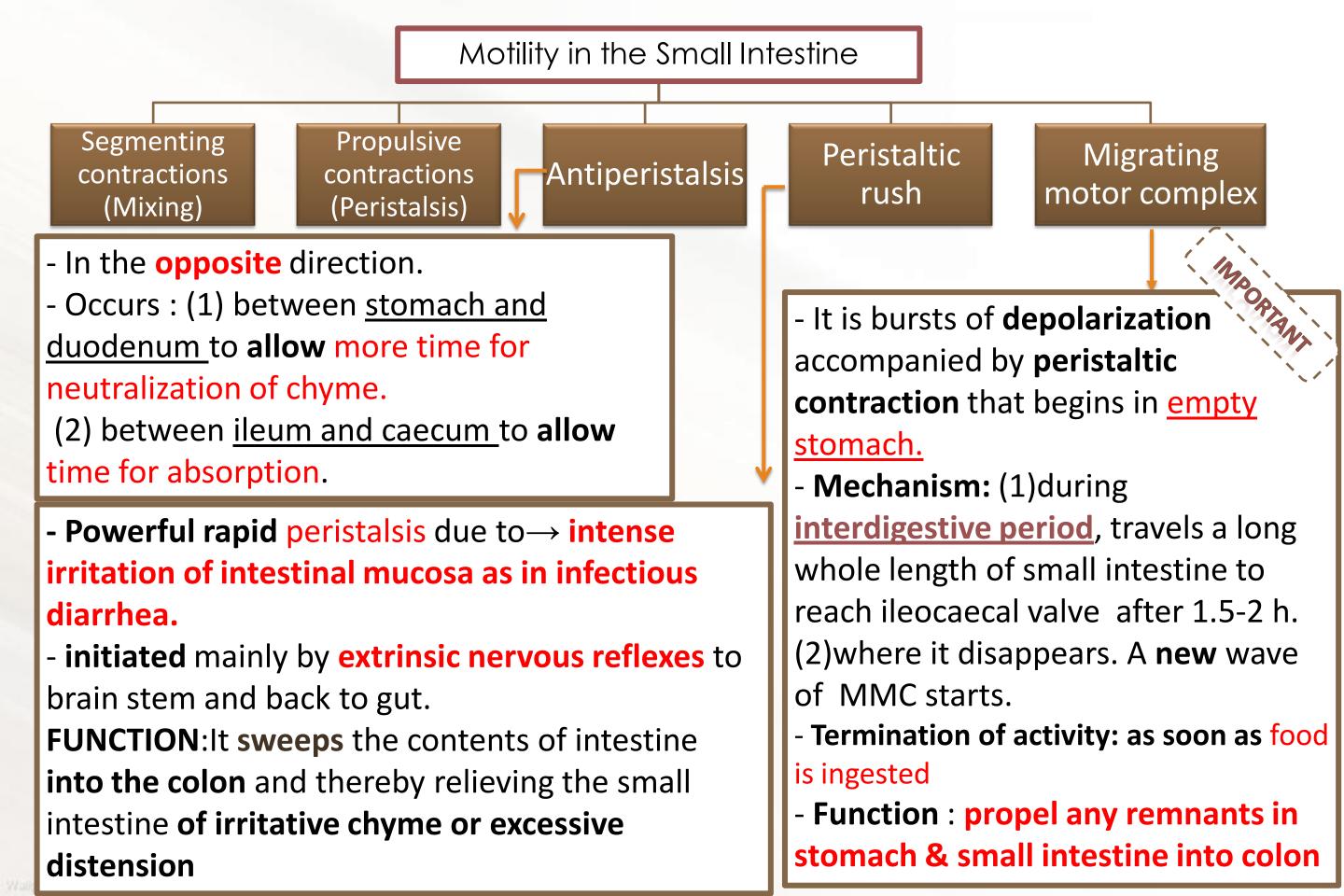
6 PHYSIOLOGY OF SMALL INTESTINE

Objectives :

- Motility in the small intestine.
- Control of intestinal motility.
- Secretions of the small intestine
- Basic principles of gastrointestinal absorption.
- Digestion & absorption of carbohydrates, proteins and fats.
- Absorption of vitamins.
- Absorption and secretion of electrolytes and water.


Secretion and absorption is not a part of physiology's lectures. Rather it's a part of biochemistry's lectures (from slide 6 to the end) (Dr. M.alzoghaibi)


Resources :

Unit II, chapter 4, page 53 -55.

For more information about the transportation in absorption : - Go back to physiology lecture of foundation block.

These videos might be helpful (from Areej AlWahaib): fat : digestion <u>Digestion and Absorption of Fats Part 1/2</u> absorption <u>Digestion and Absorption of Fat - Part 2/2</u> protein : digestion <u>Digestion and Absorption of Proteins - Part 1/2</u> Absorption https://www.youtube.com/watch?v=qDcvtOlaqZA carbs : digestion <u>Digestion and Absorption of Carbohydrates PART 1/2</u> absorption <u>Digestion and Absorption of Carbohydrates PART 1/2</u>

Movement of the villi:

It consists of three patterns of movements:

- 1- fast shortening
- 2- slow lengthening
- 3- side to side movement.

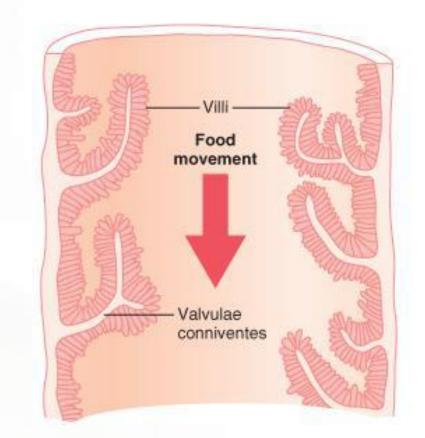
The movement of the villi is initiated by local nervous reflexes in response to chyme.

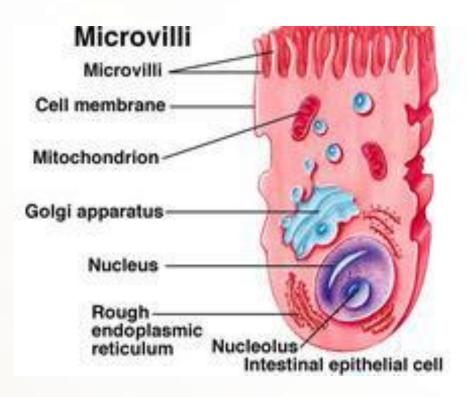
(villikinin) is the hormone released by intestine when it comes in contact with digestive products.

The movement of the villi facilitates:

absorption ()

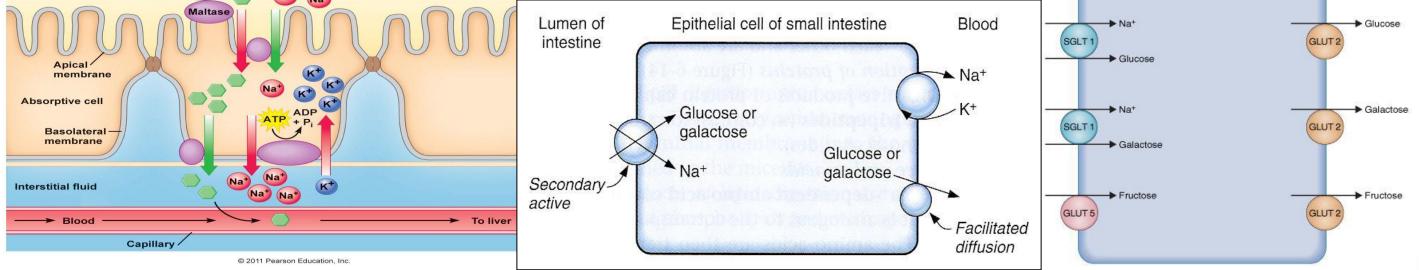
Lymph flow from central lacteal into lymphatic system (see absorption of the long-chat fatty acid) (⁷


Control of intestinal motility				
Neural control	Hormonal control			
Parasympathetic 个 motility	个 intestinal motility:	Gastrin, CCK, insulin, Motilin & serotonin		
Sympathetic \checkmark motility	Relaxing ileocaecal sphincter:	gastrin & CCK		
Gastroileal reflex: Gastric distension → impulses through myentric plexus → ileum and initiates peristaltic movement →open ileocaecal valve → food passes to colon	Regulating MMC (during fasting):	Motilin		
	Inhibits intestinal motility:	secretine& glucogon		
	Contracts ileocaecal sphincter:	Secretine & glucogon		
	Stimulating movement of villi:	villikinin		


Secretions of small intestine :

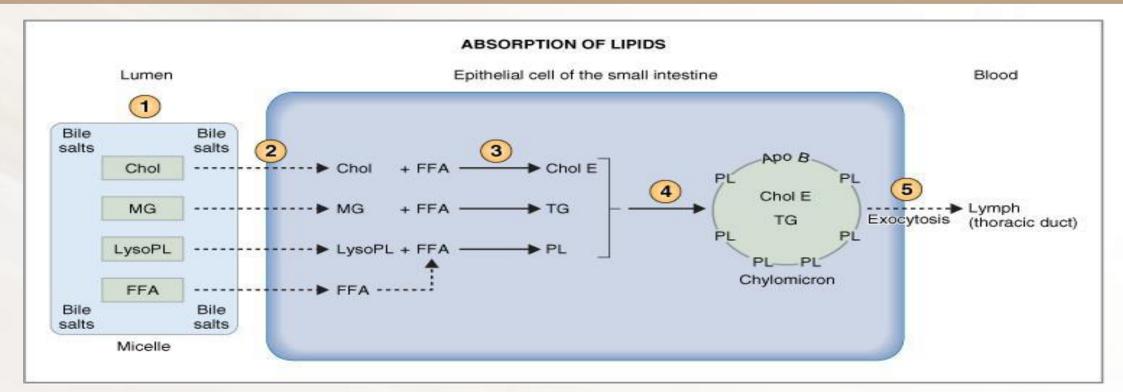
Secretion of mucus	Secretion of intestinal juices (succus entericus)	Absorptive -
 By Brunner's Glands . They secrete large amounts of alkaline mucus, which contains a large amount of bicarbonate ions. They are stimulated by: (1) irritating stimuli on the duodenal mucosa. (2) vagal stimulation. (3) secretin. They are inhibited by 	 By the Crypts of Lieberkühn. The Crypts of Lieberkühn are small pits lie between intestinal villi. Their epithelium composed of: Goblet cells, secrete mucus. Enterocytes, secrete large quantities of H2O and electrolytes. (Note :Enterocytes over the surfaces of adjacent villi reabsorb H2O, electrolytes & end products of digestion) 	Lacteal Goblet cell Blood capillaries Intestinal crypt Muscularis mucosae Duodenal glands
sympathetic stimulation.	Succus enericus	
Mucus Protect the mucosa	 Volume: 1800 ml/day. PH: 7.5-8. It participates in the neutralization of chyme acidity delivered from stomach. Composition: 0.6 % organic, 1 % inorganic substance. The enzymes that are actually secreted into the lumen are enteropeptidase and amylase. Most of them are found either in the in the brush border or in the cytoplasm of enterocytes. 	 Intestinal juice secretion is stimulated by: A. Distension, tactile & vagal stimulation. B. Hormones as gastrin, secretin, CCK, glucagons, enterocrinin. Inhibited by Sympathetic stimulation.

Absorption of small intestine :


- Absorptive surface of the small intestinal mucosa contains structures that increase its surface area in order to enhance the absorption of digestive molecules.
- These structures are :
 - Valvulae conniventes (folds in small intestinal mucosa) → increase surface area 3-folds.
 - Villi (found on the mucosal surface) → increase the surface area another 10-fold.
 - The epithelial cell on each villus is characterized by a **brush border** (consisting of as many as 1000 microvilli) → increases the surface area another 20-fold.

Digestion & absorption of carbohydrates :

	Digestion	Absorption
-	 Lactase, sucrase, maltase & a-dextrinase → these enzymes can split the disaccharides (such as lactose, sucrose & maltose) and other small glucose polymers into their constituent monosaccharides. These 4 enzymes located in enterocytes which covering the intestinal microvilli brush border → so, once the disaccharides come in contact with these enterocytes , the digestion will occur. 	 All the carbohydrates are absorbed in the form of monosaccharides except a small fraction of disaccharides. At brush border : (1) Glucose & Galactose → secondary active transport (Na - glucose/galactose co-transport "SGLT1") (2) Fructose → facilitated diffusion (Na+ independent "GLUT 5"). (3) Pentose → passive diffusion. At basolateral membrane : Glucose, galactose & fructose → facilitated diffusion (Na+ independent "GLUT 2").
ume	en Maltose Glucose Na [†] Na [†] Maltase Na [†] Na [†]	Epithelial cell of small intestine Blood


Digestion & absorption of protein:

	D	igestion	Absorption
-	•	ain as dipeptides and	- Proteins are absorbed in the form of dipeptides,
	tripeptides .		tripeptides, and a few free amino acids.
-	•	f proteins are digested to	- At Brush border :
	amino acids by the	•	1- D-amino acids are transported by passive
-	 Most protein digest 	tion occurs in the duodenum	diffusion .
	and jejunum by am	ninopeptidases,	2- L-amino acids are transported by secondary
	oligopeptidases,	Intestinal Amino acids of	active transport (Na – amino acids co-transport).
i	intracellular	Iumen a protein	3- dipeptides & tripeptides cross by active
	dipeptidase	Carboxypeptidase	transport protein carrier (then it hydrolyzed by
i	and tripeptidases.	Trypsin Aminopeptidase]	brush border & cytoplasmic oligopeptidases to
		Carboxypeptidase Brush border enzymes (in microvilli)	amino acids).
			- At Basolateral membrane : amino acids leave
			the cell by facilitated transport.
			Lumen of Epithelial cell of small intestine Blood
		Amino acids Dipeptide	Intestine Amino Basolateral
		۵ کې	Brush border Amino acids membrane
		Intestinal Tripeptide	Na ⁺ peptidases
		cytoplasm O Amino acid	Dipeptides and
		Interstitial space	tripeptides and K ⁺
		Capillary	H+

Bile salts and lecithin in the bile help fat <u>digestion</u> by make the fat globules readily <u>fragmentable</u> with the <u>water</u> in the small intestine (<u>emulsification of fat</u>).

Bile Salts <u>break</u> the fat globules into very small sizes, so that the water-soluble digestive enzymes can act on the globule surfaces

In the presence of an abundance **of bile micelles**, about **97**% of the fat is absorbed; in the absence of the bile micelles, only 40 to 50% can be absorbed

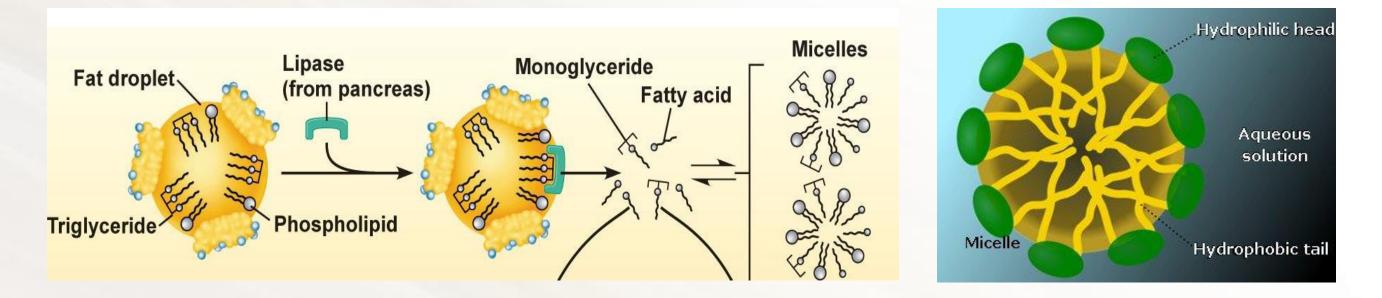
Formation of micelles

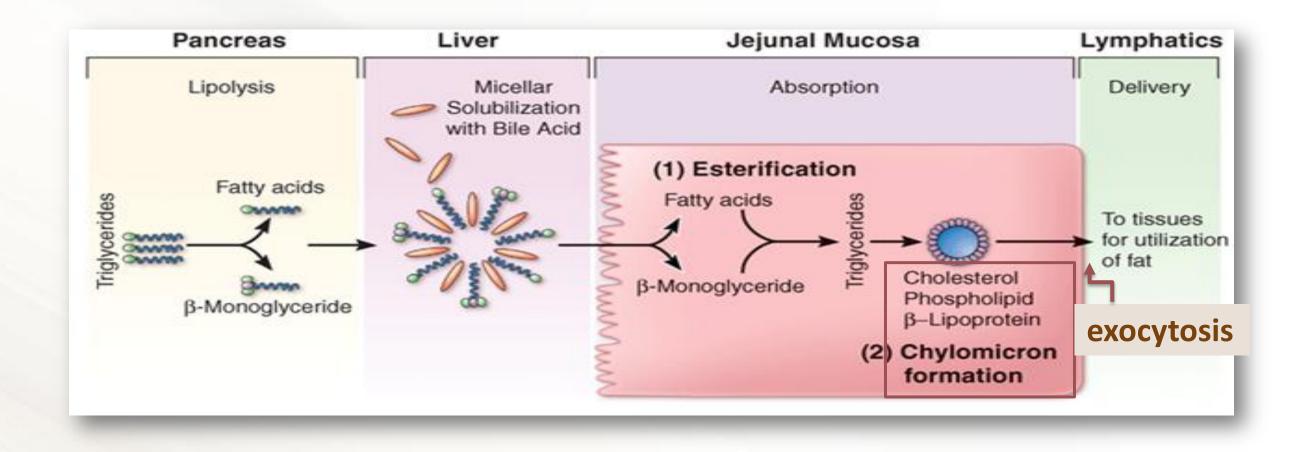
Bile salt are **amphipathic** molecules,

each composed of a sterol nucleus (fat-soluble) + a polar group (water-soluble).

- Micelles are small spherical, cylindrical ,globules 3 6 nm in diameter
- composed of 20 40 molecules of

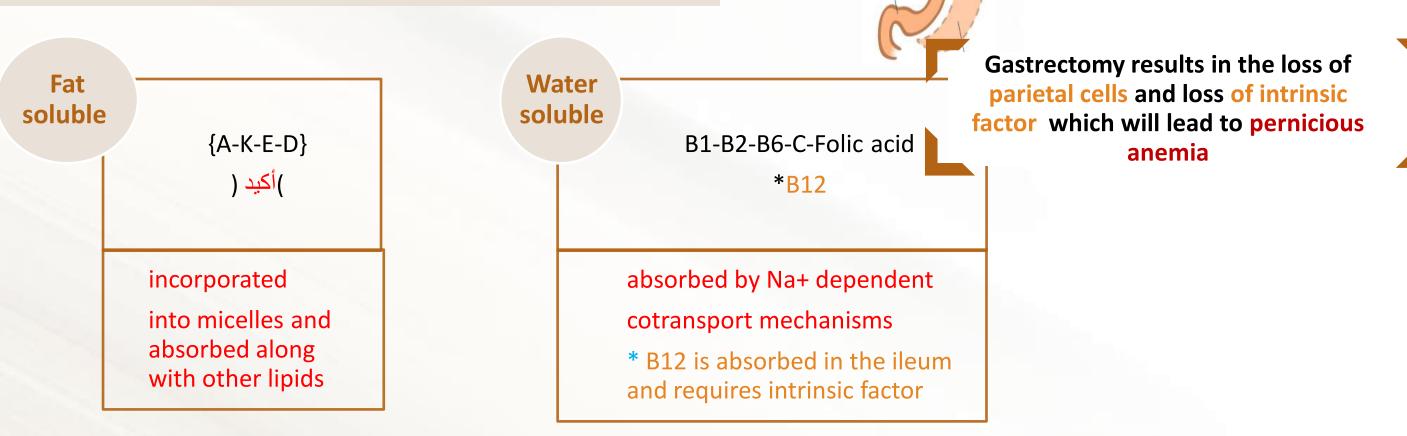
bile salts.


Amphipathic;


both <u>hydrophilic</u> (*water-loving*, polar) and <u>lipophilic</u> (*fat-loving*) properties

• The polar parts are (-) charged, they allow the entire micelle globule to dissolve in the water of the digestive Fluids.

The micelles act as a **transport medium** to carry


the monoglycerides and free fatty acids to the — brush borders of the intestinal epithelial cells

Triglycerides aggregate into globules along with +the **absorbed cholesterol and phospholipids**. **B-lipoprotein** coat part of the surface of each globule to form \rightarrow **chylomicrons**. -**Chylomicrons** diffuses to side of the cell and is <u>excreted</u> by **exocytosis** into the central <u>lacteal</u> of villi, to lymph, then to thoracic duct.

Absorption Of Vitamins

Secretions Of Electrolytes And Water

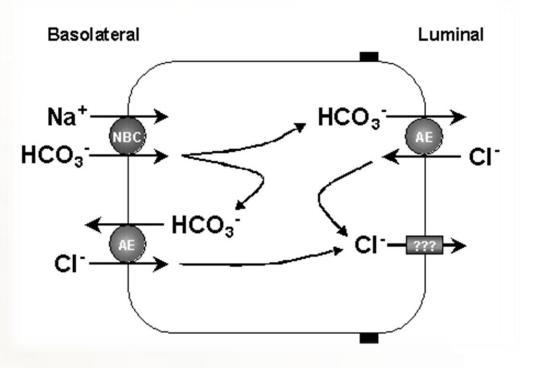
Electrolytes and H2O cross intestinal epithelial cells by either: 1- cellular or 2-paracellular route The permeability of the tight junctions varies with the type of epithelium

Leaky epithelium are in the small intestine and gallbladder

A tight epithelium is in the colon

Absorption Of Electrolytes

Electrolytes Absorption mechanism 1-Passive diffusion 2-Na+-glucose or Na+-amino acid co-transport 3-Na+-Cl- exchange 4-Na+-**H**+ exchange Na+ The next step in the transport process is osmosis of water into the paracellular spaces because a large osmotic gradient has been created by the elevated concentration of ions in the paracellular space) **NOTE :** Aldosterone Greatly Enhances Na+ Absorption, so almost no NaCl & water loss accompanies Na+ absorption by mechanisms: CI-**1-Passive diffusion** 2-Na+-Cl- cotransport 3- Cl- HCO3- exchange **K+** Passive diffusion (loss of K+ in diarrhea causes Hypokalemia) Plasma Ca++ —>Parathyroid hormone (it goes to kidney & activate Vit. D in **Ca++** order to absorb more Ca++ in intestine) absorption by 25-hydroxy-vitamin D3 (inactive) > In kidney> 1,25 dihydroxy-vitamin D3 (active). enterocytes. Stimulates synthesis of Ca-binding protein and Ca-ATPase in enterocytes.


• The epithelial cells on thesurfaces of the villi in the ileum and large intestine have a specialcapability of secreting HCO3-in exchange for absorption of Cl-

HCO3-

 { this provides alkaline HCO3- thar neutralize acid products formed by bacteria in larg intestine }

Hormonal Control Of Absorption & Secretionsof Electrolytes

Hormones	Action	
Glucocorticoid	absorption of H2O & ions (small & large intestine)	
Somatostatin	H2O & ions absorption (ileum & colon)	
Epinephrine	NaCl absorption (ileum)	
Aldosterone	synthesis of Na+ channel (colon)	
Catecholamines	intestinal secretion	

Done by : Areej Alalwan Areej Alwahaib Fatimah Alqarni Revised by : Ahmed Alhussien Rahma Alshehri

GOOD LUCK

Wallpapar77.com