

Hematopoiesis: Formation of blood cells.

Hematopoietic stem cells (HSC) characteristic:

- Self-renewal.
- Cell differentiation.

Transcriptional factors:

Lead to proliferation of HSC, and it can push the differentiation to one side. Like erythropoietin \rightarrow Erythrocyte.

Erythropoiesis: Formation of RBCs

The **Bone Marrow** is the major site with the need of:

- Folic acid (DNA synthesis)
- Vit B12 (DNA synthesis),
- Amino acids (globin chain)

- Iron Ferrous (haem synthesis)
- Erythropoietin (growth factor)
- minerals and other regulatory factors.

Notes:

- Hb synthesis begin at erythroblast and stop at reticulocyte, but it is highly active at normoblasts (especially intermediate normoblast).
- Hemoglobin maintains the shape of RBC also
- * Erythroblast is the early recognizable erythroid precursor.
- Reticulocyte & Erythrocyte = will be found in the circulation

Normal ranges:

Indices	Male	Female	HCT
Hemoglobin(g/dL)	13.5-17.5	11.5-15.5	Centrifuged Blood Sample
Hematocrit (PCV) (%)	40-52	36-48	
Red Cell Count (×10 ¹²)	4.5-6.5	3.9-5.6	—— Liquid (plasma)
Mean Cell Volume (MCV) (fL)	:	80-95	"Buffy coat" (white blood cells and plotelets)
Mean Cell Hemoglobin (MCH) (pg)	-	30-35	Red blood cells

ANEMIA

Reduction of Hb concentration leading to decreased O2 carrying capacity of blood and thus O2 availability to tissues (hypoxia).

-Clinical features:

Presence or absence of clinical feature depends on:

1-Speed of onset :

Rapidly progressive anemia causes more symptoms than slow onset anemia due to lack of compensatory mechanisms:

(cardiovascular system, bone marrow and O2 dissociation curve right shifting)

2-Severity:

Mild anemia no symptoms usually, symptoms appear if Hb less than 9g/dL.

3-Age: <u>Elderly tolerate</u> anemia less than young patients.

Clinical features				
General	Specific			
Related to anemia: Weakness, headache, pallor, lethargy, and dizziness.	Spoon nail	iron deficiency.		
	Leg ulcers	sickle cell anemia.		
Related to compensatory mechanism:	Jaundice	hemolytic anemia.		
Palpitation (tachycardia) Angina, Cardiac failure.	bone deformities	thalassemia major.		

Classifications of anemia	

OBIN	Reduction of prophyrin →idroblastic anemia	Hyp
HEMOGL	Iron deficiency ->IDA	ochrom Syticane
	Reduction of globin chain->thalassemia	
DNA	DNA synthesismegaloblastic anemia due to : folate, vit B12 def. ↓ Myelodysplastic syndrome (MDS).	Macrocytic anemia
r .	Blood loss due to acute bleeding.	поп
COUNT	Hemolysis due to: Autoimmune, Enzymopathy, Membranopathy Mechanical, Sickle cell anemia.	Normo
RBC	Reduction of RBCs production :- -BM failure: Chemotherapy, aplastic anemia, Malignancy -Anemia of chronic disease	cytic iic anemia

*

	Hypochromic microcytic anemia	Macrocytic anemia	Normocytic normochromic anemia
MCV	low	high	normal
МСН	low		normal
НВ	low	high	low
Red cell count			low

\checkmark

Iron Deficiency Anemia

- / Iron is among the abundant minerals on earth (6%).
- ✓ Iron deficiency is the most common disorder(24%). Due to limited absorption ability :

1-Only 5-10% of taken iron will be absorbed.

2- Inorganic iron can not be absorbed easily.

Or due to excess loss due to hemorrhage

Iron absorption and regulation:

*Duodenum is the site of absorption.

*Dietary iron (ferric fe3+) converted to ferrous (fe2+) before its absorption, and its entry controlled by DMT-1.

*dietary haem source : liver and red meat, its absorption controlled by HCP-1 *Hepcidin produced in liver and it's the major hormonal regulator of iron, it interfere with ferroportin either in intestine or macrophages so it inhibits iron absorption and release.

*ferroportin is a protein responsible for the exit of iron (the only exit pathway).

Continue..

Factor affecting iron absorption:-

1- iron body status:

Increased demands (iron def., pregnancy..) \rightarrow low iron stores \rightarrow high absorption. Iron overload \rightarrow full iron stores \rightarrow low absorption.

2-Content and form of dietary iron:

More iron, Haem iron and Ferrous iron \rightarrow more absorption.

3- GIT mucosa:

Disruption of GIT mucosa \rightarrow cannot absorb iron.

4- Balance between dietary enhancers and Inhibitory factors:

Enhancers: Meat (haem iron), fruit (vit c), sugar (solubilizing agent), and acids Inhibitory: Dairy foods (calcium), high fiber foods (phytate), coffee and tea (polyphenoles), and anti-acids.

Causes of IDA:

1- chronic blood loss:

GIT Bleeding: peptic ulcer, esophageal varices , hookworm cancer. Uterine bleeding, and hematuria.

2-increased demand:

Immaturity, growth, pregnancy, and EPO (erythropoietin) therapy.

3- Malabsorption:

Enteropathy and gastrectomy.

4- poor diet:

Rare as the only cause.

Development of IDA:

	1 Normal	2 Pre-latent	3 Latent	4 Iron def. anemia
Stores	Normal	Low	Low	Low
MCV/MCH	Normal	Normal	Low	Low
Hemoglobin	Normal	Normal	Normal	Low

Signs and symptoms of IDA:

Beside symptoms and signs of anaemia +/- bleeding patients present with:

- (a): Koilonychia (spoon-shaped nails)
- (b): Angular stomatitis and/or glossitis

(c): Dysphagia due to pharyngeal web (Plummer-Vinson syndrome)

(a)

(b)

Investigation:

Microcytic hypochromic anemia with:

-Anisocytosis (variation in size) and Pokiliocytosis (variation in shape) -pencil-shaped cells (the circled one)

- target cells .

Iron studies :

Investigation: BM Iron stain (Perl's stain): The gold standard but invasive procedure.

Normal

IDA: reduced or absent iron stores (hemosiderin)

Treatment of IDA:

- Treat the underlying cause.
- Iron replacement therapy:

Oral :(Ferrous Sulphate OD for 6 months).

Intravenous:(Ferric sucrose OD for 6 months).In case of malabsorption *Hb should rise 2g/dL every 3 weeks.

Prevention of IDA:

Dietary modification:

Meat is better source than vegetables.

Food fortification (with ferrous sulphate):

It has side effects: GIT disturbances, staining of teeth and metallic taste.

/ Iron supplementation:

For high risk groups.

Anemia of chronic disease

Normochromic normocytic (usually) anemia caused by decreased release of iron from iron stores due to raised serum Hepcidin (by increasing IL-6, IL-1and TNF)

Associated with:

- Chronic infection including HIV, malaria.
- ✓ Chronic inflammations.
- Tissue necrosis.
- Malignancy.

work up and treatment:

Normocytic normochromic or mildly microcytic anaemia.
Low serum iron and TIBC (Total iron-binding capacity).
Normal or high serum ferritin (acute phase reactant).
High haemosiderin in macrophages but low in normoblasts.

-Manegement:

treat the underlying cause and iron replacement +/- EPO (erythropoietin).

Done by Abdullah Alzahrani Revised by Rahma Alshehri

<u>TEAM LEADERS :</u> ABDULRHMAN ALTHAQIB

& MAHA ALZEHEARY

Contact us:

haematology433@gmail.com

@haematology433

Good luck ...