

LECTURE 2:

THYROID HORMONES

Objectives:

- Types and biosynthesis of thyroid hormones
- Thyroid hormone action
- Regulation of thyroid hormones
- Thyroid function tests
- Goitre
- Hypo and hyperthyroidism
 - Causes
 - Diagnosis
 - Treatment
- Thermogenesis

Thyroid hormones

- Thyroxine (T4) and tri-iodothyronine (T3)
- •Synthesized in the thyroid gland by:
 - **□** Iodination (organification)
 - ☐ Coupling of two tyrosine molecules
 - Attaching to thyroglobulin protein
- Thyroid gland mostly secretes T4
- Peripheral tissues (liver, kidney, etc.) deiodinate T4 to T3
- •T3 is more biologically active form
- •T4 can be converted to rT3 (reverse T3) inactive form
- Most of T4 is transported in plasma as <u>protein-bound</u>
 - ✓ Thyroxin-binding globulin TBG (70%)
 - ✓ Albumin-bound (25%)
 - ✓ Transthyretin-bound (5%)
- •The unbound (free) form of T4 and T3 are biologically active

Thyroid hormone

Action:

- Essential for normal maturation and metabolism of all body tissues
- Affects the rate of protein, carbohydrate and lipid metabolism
 - Regulates thermogenesis

Regulation of TH secretion:

By the hypothalamic-pituitary-thyroid

The hypothalamus senses low levels of T3/T4 and releases thyrotropin releasing hormone (TRH)

TRH stimulates the pituitary to produce <u>thyroid</u> <u>stimulating hormone (TSH)</u>

<u>TSH</u> stimulates the thyroid to produce <u>T3/T4</u> until levels return to normal

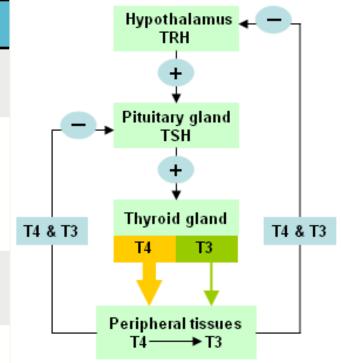
Thyroid function tests:

- TSH measurement: Indicates thyroid status
- (TSH may take up to <u>8 weeks</u> to adjust to new level during treatment)
- Total T4 or free T4:
 - ✓ Indicates thyroid status
 - ✓ Monitors anti-thyroid treatment
 - ✓ Monitors thyroid supplement treatment

TSH and T4 (total or free) are sensitive, first-line test

N.B: Some labs only measure TSH as first-line test

- Total T3 or free T3:
 - ✓ Rise in T3 is independent of T4


(In some patients only T3 rises (T4 is normal)

- ✓ For earlier identification of T3 thyrotoxicosis
- Antibodies:

Diagnosis and monitoring of autoimmune thyroid diseases

(Hashimoto's thyroiditis): Anti-thyroid peroxidase in hypothyroidism

(Grave's disease): Antibodies against TSH receptors on thyroid cells

High thyroid levels suppress TRH and TSH

Low thyroid levels stimulate TRH and TSH to produce more hormone

Goiter:

Enlarged thyroid gland

May be associated with:

- 1. Hypofunction
- 2. Hyperfunction
- Normal concentration of thyroid hormones (euthyroid)

Causes:

- Iodine deficiency
- Selenium deficiency
- Hashimoto's thyroiditis
- Congenital hypothyroidism
- •Grave's disease
- Thyroid cancer
- : Hypothyroidism
- : Hyperthyroidism

Hyperthyroidism

Over-activity of thyroid gland

Hypothyroidism

Deficiency of thyroid hormones.

- ☐ Hypothyroid children have delayed skeletal maturation, short stature, delayed puberty
- Untreated congenital hypothyroidism causes permanent brain damage
- ☐ Hypothyroid patients have <u>high</u> <u>serum cholesterol levels</u> due to:
- 1 Down regulation of LDL receptors on liver cells
- 2 Failure of sterol excretion via the gut

Hypothyroidism:

- Primary hypothyroidism: (Most common)
- -Failure of thyroid gland.
- Secondary hypothyroidism: Failure of the pituitary to secrete TSH (rare).
- Failure of the hypothalamic-pituitary-thyroid axis.

Causes:

- Hashimoto's disease.
- Radioiodine or surgical treatment of hyperthyroidism.
- Drug effects.
- TSH deficiency.
- Congenital defects.
- Severe iodine deficiency.

Diagnosis:

- Elevated TSH levels confirms hypothyroidism (primary).

Clinical features:

- Tiredness.
- Cold intolerance.
- Weight gain.
- Dry skin.

Treatment:

- **T4** replacement therapy (tablets).
- Monitoring TSH level to determine dosage.
- Patient has to continue treatment for life.

Hyperthyroidism:

- Increased secretion of thyroid hormones
- Tissues are exposed to high levels of thyroid hormones (thyrotoxicosis).
- Increased pituitary stimulation of the thyroid gland (secondary).

Causes:

- Grave's disease.
- Toxic multinodular goiter.
- Thyroid adenoma.
- Thyroiditis.
- ↑ Intake of iodine / iodine drugs.
- ↑ intake of exogenous T4 and T3.

Treatment:

- Antithyroid drugs: carbimazole, propylthiouracil.
- Radioiodine:

Sodium ¹³¹I inhibits T4/T3 synthesis.

Surgery: Thyroidectomy.

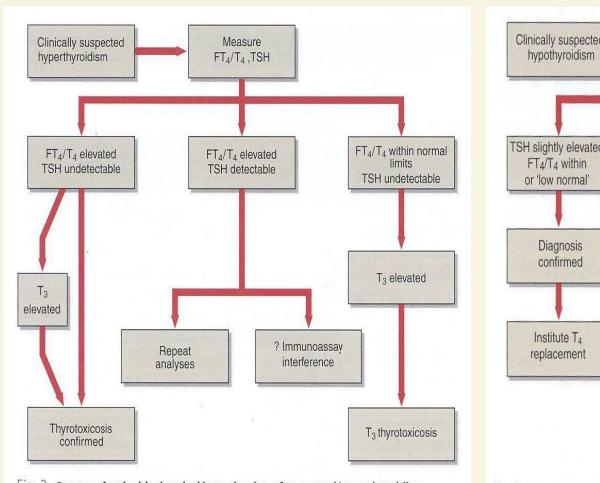
Clinical features:

- Weight loss with normal appetite.
- Sweating, heat intolerance.
- Fatigue.
- Palpitation / agitation, tremor.
- Angina, heart failure.
- Diarrhea.
- Eyelid retraction and lid lag.

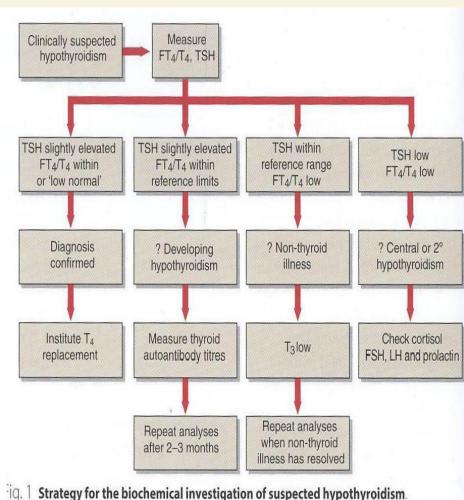
Diagnosis:

Suppressed TSH level
Raised thyroid hormone level

- => Confirms primary hyperthyroidism
 - ☐ Problems in diagnosis:
- Total serum T4 changes due to changes in binding protein levels.
- In pregnancy, high estrogens increase TBG synthesis
- (- Total T4 will be high, free T4 will be normal)
- Congenital TBG deficiency can also influence results.


Hyperthyroidism

- ☐ Grave's disease :
- An autoimmune disease.
- Most common cause of hyperthyroidism.
- Antibodies against TSH receptors on thyroid cells mimic the action of pituitary hormone.
- Normal regulation of synthesis/ control is disturbed

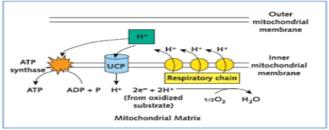

Hypothyroidism

- NEONATAL HYPOTHYROIDISM
- Due to genetic defect in thyroid gland of newborns.
- Diagnosed by TSH screening.
- Hormone replacement therapy.
- May cause **cretinism**, if untreated.
- -Cretinism is manifested by:
- 1. puffy face and protuberant tongue
- 2. umbilical hernia
- 3. mental retardation and short stature
- 4. deaf mute and neurological signs.
- Non-thyroidal illness
- •In some diseases, the normal regulation of TSH, T3 and T4 secretion and metabolism is disturbed.
- ⇒ Most of T4 is converted to rT3 (inactive)
- ⇒ Causing thyroid hormone deficiency
- TSH secretion is suppressed
- => Secretion of T4 and T3 is decreased

Steps for investigating suspected Hypothyroidism & Hyperthyroidism

 $Fig.\ 2\quad \textbf{Strategy for the biochemical investigation of suspected hyperthyroidism.}$

Thermogenesis:

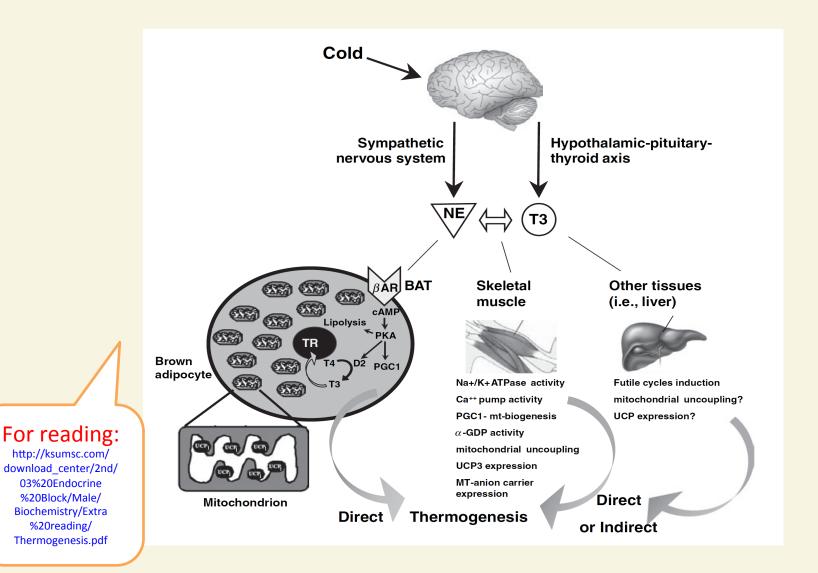

- Thyroid hormone has an active role in thermogenesis.
- About 30% thermogenesis depends on thyroid.
- Thyroid regulates metabolism and ATP turnover.
- It increases ATP synthesis and consumption by many possible mechanisms.
- Na/K gradient requires ATP to maintain it.
- The gradient is used to transport nutrients inside the cell.

- Thyroid reduces Na/K gradient across the cell membrane.
- => Caused by more nutrient transport in the cell (increasing metabolism).
- This increases the demand for ATP to maintain the gradient.
- ATP synthesis and consumption is increased => produce heat.

- Thyroid hormones causes increased proton leak into the matrix across the inner mitochondrial membrane.
- Protons are pumped back into the matrix by uncoupling proteins (UCPs) without ATP synthesis.
- This process produces heat.
- The mitochondria of brown adipose tissue contain UCP-1 (thermogenin).
- The brown adipose tissue mostly present in children.
- Produces heat via uncoupling of electron transport chain and oxidative phosphorylation.

Mechanism of action of uncoupling proteins (UCP):

The energy released in the oxidation of substrates in the mitochondria → proton gradient


The energy accumulated in this gradient is used by he ATP Synthase to produce ATP

UCPs reduce the proton gradient, bypassing the ATP <u>synthase</u>

→ <u>exothermic</u> movement of protons down the gradient →
heat

Uncoupling proteins (UCPs):

- UCP1 is the best known and best characterized of the UCPs, is present in the inner mitochondrial membrane of brown adipose tissue.
- Other UCP are found in the inner mitochondrial membrane of organs and tissues other than the brown adipose tissue (Ubiquitous distribution).

Summary

- ☐ Thyroxine (T4) and tri-iodothyronine (T3) are synthesized in the thyroid gland by:
- 1. Iodination
- 2. Coupling of two tyrosine molecules
- 3. Attaching to thyroglobulin protein
- Essential for normal maturation and metabolism of all body tissues
- Affects the rate of protein, carbohydrate and lipid metabolism
- Regulate thermogenesis
- The hypothalamic-pituitary-thyroid axis regulates thyroid secretion
- Goiter is an Enlarged thyroid gland
- Hypothyroidism is caused by deficiency of thyroid hormones
- Hyperthyroidism is caused by overproduction of thyroid hormones
- They could occur due to primary diseases (occurs in the thyroid gland)

or secondary (occurs in the pituitary gland or the hypothalamus)

TEST YOURSELF!

1- the thyroid gland mostly secretes:	6- which of the following is considered a first line test in TFT:
A- T3	A- TSH measurement
B- T4	B- total T4
C- equal quantities	C- total T3
D- neither	D- TRH measurement
2- T4 is mostly converted to T3 in:	7- in which if these states is TBG synthesis is high:
A- thyroid	A- liver diseases
B- when needed	B- stress
C- peripheral tissues	C- pregnancy
D- never converted	8- a patient is presented with diarrhea, palpitations and weight
3- which is more biologically active?	loss, he most probably has:
A- T3	A- Hyperthyroidism
B- T4	B- Hypothyroidism
C- equally active	C- Euthyroid
D- TBG- bound T3	9- thyroid hormones have an important function in thermogenesis
4- which if the following could be found in hypothyroidism patients:	through
A- high cholesterol	A- Na/k gradient
B- high blood sugar	B- Na/Ca gradient
C- high calcium	C- Na/Cl gradient
D- high iodine	10- UCP1 are found in
5- the thyroid hormones are regulated by:	A- all body tissues
A- positive feedback mechanism	B- brown adipose tissues
B- negative feedback mechanism	C- white adipose tissues
C- neither.	D- liver

1-B 2-C 3-A 4-A 5-B 6-A 7-C 8-A 9-A 10-B

THANK YOU ...

DONE BY: Ahmed AlQahtani Nasser AlQahtani Sara aldokhayel

REVISED BY:
MOHAMMED ALNAFISAH

