

The Immune System & Endocrine Disorders

Lecture 1

Prof. Zahid Shakoor &

C

Dr. Hend AlOtaibi

Objectives

- Recognize the relation of endocrine disorders and autoimmunity.
- Understand the mechanisms of damage which take place at endocrine glands and their consequences.
- Know the important examples of autoimmunity which affect different endocrine glands and the pathogenesis of these disorders.

Introduction

- Many endocrine disorders are organ-specific autoimmune diseases.
- Organ-specific autoimmune disease: the immune response is directed to a target antigen unique to a single organ.
- The manifestations are largely limited to that organ.
- The damage may be directly by:
 Humoral (Antibodies) Immunity or Cell-mediated Immunity (CMI).
- The antibodies may over stimulate or block the normal function of the target organ.

Autoimmunity doesn't always effects the function.

Examples Of Autoimmune Endocrine Diseases

Thyroid

- Hashimoto's disease: autoantibodies against thyroid peroxidase
- Primary myxoedema: atrophy of the thyroid
- **Graves' disease:** Autoantibodies against *thyroid stimulating hormone receptor* (TSH-R)

Pancreas

Type 1 Diabetes

Adrenal gland

 Addison's disease: chronic endocrine disorder. The glands produce insufficient steroid hormones

Gonads

- Autoimmune oophoritis: inflammation of ovaries
- Autoimmune orchitis: testicular pain involving swelling, inflammation and infection.

Pituitary

 Lymphocytic hypophysitis: low production of one or more hormones by the pituitary gland due to autoantibodies and autoimmunity

Thyroid Autoimmunity

- Hypothyroidism
 - Hashimoto's disease
 - Atrophic thyroiditis
- Hyperthyroidism
 - Graves' disease

Chronic Lymphocytic Thyroiditis (Hashimoto's)

- Male: Female ratio is 1:3
- Frequently seen in middle-aged women.
- Associated with HLA-B8
- Individuals produce auto-antibodies and sensitized TH1 cells specific for thyroid antigens.
- Anti-peroxidase and anti-thyroglobulin antibodies.
- There will be symptoms of hypothyroidism.
- The DTH response is characterized by: an intense infiltration of the thyroid gland by lymphocytes, macrophages, and plasma cells, which form lymphocytic follicles and germinal centers.

- The resultant inflammatory response causes: A goiter or visible enlargement of the thyroid gland (a physiological response to hypothyroidism).
- Antibodies are formed to a number of thyroid proteins, including:
 - thyroglobulin
 - thyroid peroxidase

(both of which are involved in the uptake of *iodine*)

Clinical Features of Hashimoto's

Graves's Disease

- Less common than Hashimoto's disease.
- Male: Female ratio up to 1:7
- Associated with HLA-B8
- The production of thyroid hormones is carefully regulated by thyroid-stimulating hormone (TSH), which is produced by the pituitary gland.
- Normally: Binding of TSH to a receptor on thyroid cells activates adenylate cyclase and stimulates the synthesis of two thyroid hormones, thyroxine and triiodothyronine.
- In Graves' disease: auto-antibodies bind the receptor for TSH and mimic the normal action of TSH, activating adenylate cyclase and resulting in production of the thyroid hormones.
- But unlike TSH: the autoantibodies are not regulated, and consequently they overstimulate the thyroid and cancels negative feedback.
- That's why these auto-antibodies are called longacting thyroid-stimulating (LATS) antibodies.

Summary: The antibodies are acting like copycats of TSH.

Clinical Features of Graves'

Insulin-dependent Diabetes Mellitus (IDDM)

- IDDM is an example of type IV hypersensitivity.
 - Auto-reactive **T-cells** invade the *pancreatic islets* and destroy the insulin-secreting beta cells.
 - Macrophages become activated.
 - This is frequently referred to as insulitis. (Cell-mediated
 DTH response)
 - As a result: decreased production of insulin and consequently increased level of blood glucose.
- **Pathogenesis:** Mechanisms responsible for the islet cell destruction:
 - Genetic susceptibility (HLA-DQ alleles).
 - Autoimmunity.
 - Environmental factors, infections. E.g.. Coxsackie virus, Echovirus
- The most likely scenario is that viruses cause mild beta cell injury, which is followed by an autoimmune reaction against altered beta cells in persons with HLAlinked susceptibility.
- Type 1 IDDM patients are prone to other autoimmune disorders (10%).

Pancreatic beta-cell autoreactive T cells (DTH & CTL) and autoantibodies.

Autoimmune Adrenocortical Failure (Addison's)

- Male: Female ratio is 1:4
- Associated with HLA-DR3 and/or DR4
- It is a classic organ—specific autoimmune disorder.
- It develops as a consequence of autoimmune destruction of steroid-producing cells in the adrenal gland.
- A major autoantigen is 21-hydroxylase (210H).
- Which is involved in the biosynthesis of cortisol and aldosterone in the adrenal cortex.
- T cell-mediated injury is likely to be central to pathogenesis.
- Adrenal Autoantibodies may have a pathogenic role, or could arise secondary to T cell-mediated tissue damage,

Clinical Features of Primary Adrenal Insufficiency

Damage to the Adrenal Cortex my be caused by

Summary

	Hashimoto's	Graves'	Diabetes	Addison's
Organ	Thyroid	Thyroid	Pancreas	Adrenal
M:F Ratio	1:3	1:7	-	1:4
Gene	HLA-B8	HLA-B8	HLA-DQs	HLA-DR3 / DR4
ABs	Anti- peroxidase, Anti- thyroglobulin	Long-acting thyroid-stimulating (LATS) antibodies	T-cells	T-cells, Adrenal Autoantibodies
Cells Affected	Thyroid peroxidase	TSH- producing cells	Pancreatic islets (insulinsecreting beta cells)	Steroid- producing cells
Hormones Affected	T√3, T√4	T√3, T√4	Insulin	Cortisol, Aldosterone

MCQs

1. Which one of the following genes is	s associated	with	Grave '	s disease:
--	--------------	------	----------------	------------

- A) HLA-B4
- B) HLA-B6
- C) HLA-B8
- D) HLA-B3

2. A patient developed a goiter after being diagnosed with Hashimoto's thyroiditis. What is the cause?

- A) Inflamed lymph nodes
- B) Hypoactivity of the gland
- C) Tumor
- D) Compensatory mechanism

3. Type 1 diabetes is an autoimmune disease with a prior infection of which kind?

- A) Viral
- B) Bacterial
- C) Fungal
- D) Protozoan

4. The enzyme affected in Addison's disease is

- A) 17α -hydroxylase
- B) 11-deoxycortisol
- C) 21-hydroxylase
- D) 11β-hydroxylase

5. In Hashimoto's, which of the following cells infiltrate the thyroid gland?

- A) Lymphocytes
- B) Plasmocytes
- C) Macrophages
- D) All of the above