
\checkmark Revise synthesis, regulations \& dysregulations of corticosteroids.
\checkmark Classify available natural vs synthetic glucocorticoides; whether systemic or topical; expanding on their properties \& indications .
\checkmark Contrast their different ADRs \& methods of prevention or treatment Focus on therapeutic roles of mineralocorticoids \& relevant mechanism of action.
\checkmark Hint on drugs antagonizing corticosteroid action.

slide

Corticosteroids

Glucocorticoids [GC]

Synthesis in	Zona Fasciculata
Released as	-Cortisol -Cortisone -Corticosterone
Regulated by	 catecholamines.

Function -Control carbohydrate, fat \& protein metabolism. -anti-inflammatory \& immunosuppressants

Deficiency Addison's disease
Increased Cushing's syndrome

Mineralocorticoids [MC]

Zona Glomeruloza
Aldosterone

Potassium - ACTH (little control)
dopamine- atrial natriuretic peptide (ANP)

- Angiotensin II - neuropeptides .

Control water \& electrolyte homeostasis (acute function)

Hyponatremia, hyperkalemia, acidosis, wasting, hypotension \& shock.

Conn's syndrome:
Hyperaldosteronism, Hypernatremiam, Hypervolemiam Hypertension \& Hypokalemia.

Notes

1-Addison's disease

Hyponatremia, hyperkalemia, hypoglycemia, progressive weakness \& fatigue, low blood pressure, depression, anorexia \& loss of weight, skin hyperpigmentation. 2-Addisonian Crisis (EMERGENCY)
$\uparrow \uparrow$ symptoms \rightarrow fever, confusion sever vomiting, diarrhea, abdominal pain \& shock.

Regulation of Glucocorticoids

Regulation of Mineralocorticoid

Pharmacology Of Exogenous Glucocorticoids

*Many types of Exogenous Glucocorticoids but most important are:
-Cortisol, Cortisone, Hydrocortisone
*Mechanism:
-Glucocorticoids binds to its receptor on by two ways :
1-Cytosolic Glucocorticoids receptor:
Mediates Genomic Action (Slow Process)
A-Expression of proteins \rightarrow Anti-inflammatory Effects
e.g. Lipocortin ,which suppress phospholipase A2 >> inhibit PG \& leukotiene.

B-Repression of proteins \rightarrow Pro-inflammatory Effects
prevent (AP-1) from binding to it's receptor >> no pro-inflammatory mediators (IL-2,6...ECT) .

2-Membranous Glucocorticoids receptor:

mediates NON-GENOMIC Action (rapid process) \rightarrow cross talks with GP coupled receptors \rightarrow alter Ca, cAMP, their downstream kinases (PKA \& PKC) \rightarrow rapidly exert anti-inflammatory effects \& shut down proinflammatory effects \rightarrow rapid process needs minutes-hrs
slide doctor's note
important
explanation

Pharmacological actions

1. On METABOLISM

CHO	Proteins	Fats	Calcium
\downarrow glucose utilization. 个gluconeogenesis leading to (hyperglycaemia)	\downarrow anabolism \uparrow catabolism leading to (Negative nitrogen balance with muscle wasting - \uparrow uric a. production Osteoporosis. - Retardation of growth in children. - Skin atrophy + capillary fragility \rightarrow bruising and stria)	fat deposition on shoulders, face and abdomen.	\uparrow urinary excretion $\uparrow \downarrow$ absorption from intestine (antivitamin D action).
2. On INFLAMMATORY \& IMMUNE RESPONSE			

\downarrow vascular permeability so \downarrow edema \& redundancy of soft tissues
\downarrow release \& synthesis of inflammatory mediators so -ve PLA2 \& -ve AA \& LTs pathways
\downarrow antigen antibody reaction so \downarrow mast cell degranulation \& transmitter release
\downarrow infiltration \& activity of inflammatory cells by \downarrow cytokines \& chemokine production
\downarrow Complement formation

3. ON HYPOTHALAMIC-PITUITARY-ADRENAL AXIS

Occurs with high doses \& long periods of treatment, Sudden withdrawal of corticosteroids produce a state of adrenocortical insufficiency. (-ve feed back mechanism)

4. Others

Euphoria or psychotic states: may occur (probably due to CNS electrolyte changes)

| slide | doctor's note | important | explanation |
| :--- | :--- | :--- | :--- | :--- |

Pharmacokinetics

1. Absorption

- Most preparations are effective orally and Parentral forms are also available.
- Can get absorbed systemically when given at local sites (e.g. skin, respiratory tract, conjunctival sac, synovial spaces etc.)

2. Distribution

- $\mathbf{9 0 \%}$ or more of cortisol in plasma is transported by reversible binding to Corticosteroids Binding Globulin (CBG) \& to albumin

Corticosteroids compete with each other on CBG (Glucocorticoids bind with high affinity \& Mineralocorticoids bind with low affinity)

- Only the unbound free form is active \& can enter cells by diffusion

3. Metabolism \& Excretion

- are metabolized by the liver \& excreted as soluble sulphates in the urine
- Some preparations transform to active form in liver

Cortisone \rightarrow Hydrocortisone
Prednisone \rightarrow Prednisolone

4. Dosage Schedule

Time of administration of GCs \rightarrow specially on prolonged use you should follow natural circadian rhythm i.e. early morning to minimize hypothalamo-pituitary-adrenal axis impairment and Better if administered on alternate days

Classification According To t 1/2 \& Method Of Administration

	Short Acting (t1/2 < 12h) . Inter	Intermediate Acting (t1/2=12-36h)	Long Acting (t1/2 >36h)
	\uparrow Na retaining property .¢ anti some	\uparrow anti-inflammatory action, with some Na retaining .	Anti-inflammatory, No Na retention .
	1-Cortisol *IM / IV * 1-Pred (EMERGENCY) intrar 2-Cortisone *IM* 2-Tria (not in liver disease) intrar 3-Pre 4-Me	```1-Prednisolone *IM, intrarticular* 2-Triamcinolone *IM, intrarticular* (No Na retention) 3-Prednisone 4-Methyl- "```	1-Dexamethasone [Fluorinated] * IM / IV * 2-Betamethasone [Fluorinated] * IM / IV *
	1-Fluticasone 2-Budesonide 3-Beclomethasone		
	Potent	Moderate	Mild
	1-Beclomethasone *cream* 2-Triamcinolone actonide *ointment* 3-Betamethasone	1-Mometasone *ointment* 2-Fluticasone *cream* 3-Fluocinolone actonide 4-Hydrocortisone acetate	1-Hydrocortisone acetate *ointment*

On sensitive skin (face, babies) only apply milde-moderate steroid as creams

slide	doctor's note	important	explanation

INDICATIONS

1. Hormone replacement therapy

1. ADRENAL INSUFFECIENCY

Addisonian Crisis *acute* (shock)
1-Parental Cortisol (hydrocortisone) $\rightarrow 100$
mg IV / every 6-8 hrs until patient is stable.
Dose \Rightarrow gradually reduced

2-Fluids and electrolytes should be corrected.
3 -Treatment of precipitating factors.

Addison's Disease *chronic*

1-Cortisol (orally) + fludrocortisone (orally)
And Dexamethasone could be given on prolonged use

2-Doses must be increased in stress to
prevent development of Addisonian crisis
3- Doses should follow circadian rhythm

2. CUSHING'S SYNDROME

1-in Diagnoses Dexamethasone
suppression test.

2-in Treatment Cortisol Temporally administered AFTER surgical removal of pituitary / adrenal / corticosteroid secreting tumors.

2. Anti-inflammatory \& immunosuppressant

We use :

1-Prednisolone
1-Severe allergic reactions e.g. serum sickness,angioneurotic edema
2-Diseases of allergic origin bronchial asthma, rhinitis, conjunctivitis, eczema \& many other atopic \& proliferative skin diseases 3-Autoimmune disorders; rheumatoid arthritis, inflammatory bowel disease systemic lupus erythrematosus, nephrotic syndrome
4-Organ transplantation; kidney, cardiac, bone marrow (\downarrow rejection) 5-Acute gout (resistant) to other drugs
5-Blood dyscrasias hemolytic anemia, thrombocytopenic purpura, agranulocytosis

3. Others	We use :
1-Raised intracranial pressure	1-Dexamethasone
2-In neoplastic diseases With cytotoxic drugs \rightarrow as in Hodgkin's disease, acute lymphocytic	If water retention is undesirable
leukemia /// 1ry or 2ndry neoplasms in the brain \& postoperative to brain surgery \rightarrow tedema $/ / /$ In antiemetic regimens \rightarrow prevent $/$ cure	
emesis of chemotherapy	
3-Suppress excess ACTH production	

1- How to avoid?

-Hyperglycemia, glycosuria, diabetes mellitus, Muscle wasting .
use better fluorinated preparations
-Growth retardation \rightarrow short stature.
-Fat redistribution \& abnormal deposition.
-Hypertension, oedema, Na retention, Hypokalaemia .
-Osteoporosis .
-Menstrual irregularities.
-Psychiatric disorders.
-Impairment of defense mechanism.
-Peptic ulcer specially if with NSAIDs.
-Skin, acne, striae, hirsutism.

-Avascular necrosis of head of femur.

Specific to glucocorticoid. -Ocular toxicity \rightarrow glaucoma \& cataract.
-Skin \rightarrow infection, atrophy, bruising.
-Eye \rightarrow viral infection, cataract, glaucoma.
-Inhalation \rightarrow fungal infection, hoarseness.
-Intrarticular \rightarrow infection, necrosis.
-Diabetes mellitus. -Hypertension or heart failure. -History of mental disorders or Epilepsy. -Osteoporosis. -Peptic ulcer. -Presence of infection or Tuberculosis \rightarrow requires chemotherapy before administration.

Precaution

1- Patients receiving GCs and is subjected to stress \rightarrow double the dose, because it may lead to addisonian crisis .

2- In children receiving GCs \rightarrow stop live attenuated vaccines, due to low immunity.
3- In pregnant women; better avoid fluorinated GCs (long acting GCs) \rightarrow teratogenicity.

4- Neo-born to mothers taking high dose GCs \rightarrow-ve HPA axis \rightarrow give the neo-born low dose of GCs the reduce it gradually to avoid adrenocortical insufficiency .
slide doctor's note important
explanation

PHARMACOLOGY OF MINERALOCORTICOIDS

Aldosterone natural（not given），Deoxycorticosterone（DOCA），Fludrocortisone

－Bind to mineralocorticoid receptors［binds GC＞MC］\Rightarrow in Mineralocorticoids responsive cells i．e． distal nephron．
－GC is destroyed，enzymatically in MC responsive cells \Rightarrow so MC will bind to its receptor alone without any competition from GC．

1．Cytosolic Mineralocorticoids receptor \rightarrow mediates GENOMIC Action \rightarrow Expression of proteins．
－In distal \＆collecting tubules：

- Na pumps \rightarrow 个 Na retention
-Na channels $\rightarrow \uparrow \mathrm{Na}$ reuptake from lumen
$\bullet K$ simporters \rightarrow 个 excretion of K \＆H．（＊N．B．Actions also on（colon，sweat \＆salivary glands））
2．Membranous GC R mediates NON－GENOMIC Action．
－Interact with GP coupled receptors \＆channels to mediate rapid adaptive changes to fluid depletion．

－Fludrocortisone Drug of choice in replacement thereby

－DOCA given Sublingual ，ineffective orally．
－Net effect is to conserve body sodium \rightarrow osmotic effect \rightarrow water follows \rightarrow expansion of extracellular fluid．
－个renal excretion of potassium $\& \downarrow$ intracellular potassium－
－In excess \rightarrow hypertension，atherosclerosis ，fibrosis \rightarrow vascular \＆cardiac remodeling \rightarrow cerebral hemorrhage，stroke \＆or cardiomyopathy．

Corticosteroid antagonist

DRUG	M.O.A.	INDICATIONS	NOTES
METOTANE	Inhibit β-hydoxylase \rightarrow inhibit corticosteroid synthesis $\rightarrow \downarrow$ its peripheral metabolism \& plasma \& urine levels	Cushing syndrome: - To reduce the symptoms before the surgery. - If the surgery can't be performed.	Safe in pregnancy.
SPIRONOLACTONE Aldosterone ntagonist	- K sparing diuretic. - Compete with steroid on receptors to block MC action.	* Hypertension \& heart failure in hyperaldosteronism (Conn's)	-

GLUCOCORTICOIDS

Replacment thrapy

Used in	Drugs	Notes	
Addison's crisis	Cortisol (hydrocortisone)	Cause salt and water retention	
Addison's disease	Cortisol fludrocortisone	Minralocorticoid	
	Dexamethasone		
Cushing	Dexamethasone suppression test	In Diagnoses	
syndrome	Cortisol	Temporally AFTER surgical removal of tumors	
ANTI-INFLAMMATORY \& IMMUNOSUPPRESSANT			
Drugs		uses	
Prednisolone		Severe allergic reactions Diseases of allergic origin, Autoimmune disorders, Organ transplantation, Blood dyscrasias, Acute gout	
Dexamethasone		uses	
Betamethasone		Raised I.C.P, neoplastic diseases, With cytotoxic drugs	
OTHERS			
Dexamethasone			
Betamethasone			

MINERALOCORTICOIDS

Drug	Therapeutic uses	Adverse effects
Aldosterone	Not used clinically	In excess \rightarrow hypertension, atherosclerosis fibrosis \rightarrow vascular \& cardiac remodeling \rightarrow cerebral hemorrhage $/$ stroke $\&$ or cardiomyopathy
Deoxycortone sterone[DOCA]	-	Drug of Choice in Replacement Therapy In Addison's disease
Fludrocortisone		

CORTICOSTEROID ANTAGONIST		
Drug	Therapeutic uses	Notes
MITOTANE	- Cushing syndrome	- \downarrow Glucocorticoids - Safe in pregnancy
SPIRONOLACTONE	- hypertension - heart failure - Hyperaldosteronism (Conn's)	Block mineralocorticoids actions (aldosterone antagonist)

| slide | doctor's note | important | explanation |
| :--- | :--- | :--- | :--- | :--- |

Quiz yourself

Q1: Typical features of topical corticosteroid use in dermatology include all of the following, except: A) more potent corticosteroids should be preferred because of higher efficacy
B) Ointments are more potent than creams
C) occlusive dressing can help increase the potency of a topical corticosteroid D) corticosteroid are best used in areas where the skin is thin,e.g. Face, scrotum, etc.
E) systemic absorption always leads to adrenals suppression with topical corticosteroid therapy

Q6: Which one of the following is given with cortisol incase of chronic Addison's disease because it has a mineralocorticoid like action:
A) Hydrocortisone
acetate
B) Beclomethason
C) Fludrocortisone

Q2: Which one of the following is wrong about lipocortin
A) lipocortin inhibits PLA2, cox-2
B) activated GRs prevent AP-1 from binding to RE and expressing proinflamatory mediators as lipocortin
C) activated GRs dimerize and bind to GRE allowing expression of antiinflammatory mediators as lipocortin

> Q7: What would you do if you're treating your patient with Glucocorticoids and you know that he's subjected to stress:
> A) You lower the dose B) You ask the patient to not take the medication while he's in a bad mood C) You double the dose

Q3: child came to you with dermatitis in his face what is the topical treatment in this case?
A) Beclomethasone cream
B) Fluticasone cream C) Hydrocortisone acetate ointment

Q4: Patient came to ER with hyponatremia, hyperkalemia, hypoglycemia, fever, confusion, sever vomiting, diarrhea and shock.
Which one of the following drugs is used in this case?
A) Betamethasone
B) Triamcinolone
C) Cortisol

Q5: A 34-yr-old woman with ulcerative colitis has required long-term treatment with pharmacologic does of a glucocorticoid agonist. Which of the following is a toxic effect associated with long-term glucocorticoid treatment?
A) A " lupus-like" syndrome
B) Adrenal gland neoplasm
C) Osteoporosis

Explanation for Q1

Explanation: Traditionally, topical corticosteroids are divided into classes based on their potency. There is not much difference in safety and efficacy if one agent is compared over other. However, there may be significant difference in price. Although ointments are more oily, they are also more potent than creams. At least 4 hours of occlusive dressing (gloves, plastic wrap) can lead to several-fold increase in the potency of a topical corticosteroid. On areas of thin skin including vulva, skin folds, ear canal besides face and scrotum, topical corticosteroids must be used with caution. Topical corticosteroid use on the eyelids is known to cause glaucoma and cataract. The amount of topical corticosteroid to be used can be calculated be the same "rule of nines" as done in patients with burns. In general, about $20-30 \mathrm{~g}$ steroid is required to cover the body surface of an adult at one time. It is well-known that systemic absorption of topically applied steroids does occur, but adrenal suppression, and other systemic complications like osteoporosis, diabetes, hypertension, etc. appear to be rare.

THIS WORK WAS DONE BY:

Contact us for any questions or comments :

Pharma_433@yahoo.com
@pharma_433

Raneem Alotaibi Ahmed Aldakhil

Hanan Aldossari
Rawan Alyahya
Reem Almassoud

We hope that we made this lecture easier for you Good Luck!

