

Calcium homeostasis

Sources: Female slides

Objectives

- List the functions of calcium
- Describe calcium metabolism
- Describe physiology of bone
- Understand and explain hormonal regulation of calcium metabolism :
 - √ Vitamin D3

Ca⁺⁺ in Body

Distribution of Ca⁺⁺ in ECF

Total plasma calcium = 9-10.5 mg/dl = 2.4 mEq/L

- 41% Non Diffusible (Protein-bound calcium)
- 59% Diffusible
 - 9% Complexed to anions (like phosphate)
 - 50% ionized (free)

Protein-bound calcium

- ❖ Most of Protein-bound calcium is bound to albumin & much smaller fraction is bound to globulin .
- **A** Binding of calcium to albumin is **pH-dependent**.
- Acute respiratory alkalosis increases calcium binding to protein thereby decreases ionized calcium level.

Distribution of Ca++ in Body

1300 g

- * 99% in the Skeleton & Teeth
- * 1% in the ICF "ER"
- * 0.1% in the ECF

"ER" = endoplasmic reticlum

Physiological importance of Calcium

- * Calcium salts in bone provide structural integrity of the skeleton.
- ❖ Calcium ions in extracellular and cellular fluids is essential to normal function for the biochemical processes :
- 1) Neuoromuscular excitability
- 2) Hormonal secretion
- 3) Enzymatic regulation
- 4) Blood coagulation
- 5) Second messenger.

Source

- Milk
- dairy products
- Fish

Daily requirements

❖ Infants & adults:

12.5 -25 mmol/day

Pregnancy , Lactation and after menopause :

25-35 mmol/day

Absorption

❖ Duodenum:

active transport

* small intestine:

concentration gradient

(facilitated diffusion)

Phosphate

Phosphate in body

- ❖ Phosphorous is an essential mineral necessary for ATP and cAMP second messenger systems.
- ❖ Phosphate plasma concentration is around 4 mg/dL.
- ✓ **Ionized** (diffusible) = 50%
- ✓ un-ionized (non-diffusible) and protein- bound = 50%
- **Calcium** is tightly regulated with Phosphorous in the body.

Bone

Bone cells

- **Osteoblasts:** bone forming cells.
- **Osteocytes:** osteoblasts surrounded by calcified matrix.
- **Osteoclasts:** bone eroding Cell "resorping", originate from monocytes.

Physiology Of Bone

Bone composition

- **❖** Organic Matrix 30%
 - ➤ Collagen Fibers 95%
 - ➤ Ground Substance 5%
 - -ECF and Proteoglycans
- give bone its **Tensile force**.
- **❖** Bone Salts 70%
 - > Salts of Ca⁺⁺ & PO4-99%
 - in form of Hydroxyapatite crystals.
 - Mg, Na, K, Carbonate ions.
 - > Amorphous salts 1%
 - A type of exchangeable calcium
 - Play role in rapid regulation of ionized Ca⁺⁺ level in ECF
 - always in equilibrium with Ca⁺⁺ in ECF
- give bone its Compressional force.

total body content Present in bone		
Calcium	99%	
Phosphate	86%	
Carbonate	80%	
Magnesium	50%	
Sodium	35%	
Water	9%	

Regulation of Calcium level

Regulation of Plasma Ca and Po4⁻³ Concentrations

1) Non-hormonal Mechanisms:

Can Rapidly Buffer Small Changes in Plasma Concentrations of Free Calcium (first line of defense against changes in calcium levels) .

2) Hormonal Mechanisms:

Provide High-Capacity and Long-Term Regulation of Plasma Calcium and Phosphate Concentrations.

Less than 9 mg/dl Ca in plasma → Tetany

More than 10.5 mg/dl Ca in plasma → Renal stone

Hormonal Control

- I. Parathyroid hormone
- II. Calcitonin
- III. Vitamin D "1,25 Dihydroxycholecalciferol"

Vitamin D

Functions of Vitamin D

❖ Intestinal tract:

Increase calcium & phosphate absorption by increasing calcium binding protein .

* Renal:

> Increases Renal calcium and Phosphate reabsorption.

Bone:

> Stimulates osteoclasts "Minor role".

> Immune system :

> stimulates differentiation of immune cells. "has nothing to do with Ca"

Vitamin D in smaller quantities

promotes bone calcification

by increase calcium and phosphate absorption from the intestine and enhances the mineralization of bone.

Vitamin D in extreme quantities

causes absorption of bone

by facilitating PTH action on bones and by increase number & activity of osteoclasts.

Control of Vitamin D

- ✓ low Ca⁺⁺ ions
- ✓ Prolactin (for production of milk)
- **✓ PTH**
- All stimulate renal 1,alpha hydroxylase. -

Summery

Overall Ca²⁺ homeostasis (Figure 7-13)

- 40% of the total Ca²⁺ in blood is **bound to plasma proteins**.
- 60% of the total Ca²⁺ in blood is not bound to proteins and is ultrafilterable. **Ultrafilterable** Ca²⁺ includes Ca²⁺ that is complexed to anions such as phosphate and free, ionized Ca²⁺.
- Free, ionized Ca²⁺ is biologically active.
- Serum [Ca²⁺] is determined by the interplay of intestinal absorption, renal excretion, and bone remodeling (bone resorption and formation). Each component is hormonally regulated.
- To maintain Ca²⁺ balance, net intestinal absorption must be balanced by urinary excretion.

	PTH	Vitamin D	Calcitonin
Stimulus for secretion	↓ Serum [Ca ²⁺]	↓ Serum [Ca ²⁺] ↑ PTH ↓ Serum [phosphate]	↑ Serum [Ca ²⁺]
Action on: Bone Kidney Intestine	 ↑ Resorption ↓ P reabsorption (↑ urinary cAMP) ↑ Ca²⁺ reabsorption ↑ Ca²⁺ absorption (via activation of vitamin D) 	↑ Resorption ↑ P reabsorption ↑ Ca ²⁺ reabsorption ↑ Ca ²⁺ absorption (calbindin D-28K) ↑ P absorption	↓ Resorption
Overall effect on: Serum [Ca ²⁺] Serum [phosphate]	${\displaystyle \mathop{\uparrow}_{\downarrow}}$	↑ ↑	\

cAMP = cyclic adenosine monophosphate. See Table 7-1 for other abbreviation.

Summery

Vitamin D

- provides Ca²⁺ and phosphate to ECF for bone mineralization.
- In children, vitamin D deficiency causes rickets.
- In adults, vitamin D deficiency causes osteomalacia.

1. Vitamin D metabolism (Figure 7-14)

- Cholecalciferol, 25-hydroxycholecalciferol, and 24,25-dihydroxycholecalciferol are inactive.
- The active form of vitamin D is 1,25-dihydroxycholecalciferol.
- The production of 1,25-dihydroxycholecalciferol in the kidney is catalyzed by the enzyme 1α -hydroxylase.
- 1α -hydroxylase activity is increased by the following:
 - **a.** \downarrow serum [Ca²⁺]
 - **b.** ↑ PTH levels
 - **c.** ↓ serum [phosphate]

2. Actions of 1,25-dihydroxycholecalciferol

- are coordinated to increase both [Ca²⁺] and [phosphate] in ECF to mineralize new bone.
- a. Increases intestinal Ca²⁺ absorption. Vitamin D-dependent Ca²⁺-binding protein (calbindin D-28K) is induced by 1,25-dihydroxycholecalciferol.
 - PTH increases intestinal Ca^{2+} absorption indirectly by stimulating 1α -hydroxylase and increasing production of the active form of vitamin D.
- b. Increases intestinal phosphate absorption.
- c. Increases renal reabsorption of Ca²⁺ and phosphate, analogous to its actions on the intestine.
- **d. Increases bone resorption,** which provides Ca²⁺ and phosphate from "old" bone to mineralize "new" bone.

FIGURE 7-14 Steps and regulation in the synthesis of 1,25-dihydroxycholecalciferol. PTH = parathyroid hormone.

MCQs

1- Total plasma calcium is equal to:

A-6.4 mEq/L

B-2.4 mEq/L

C-10.4 mEq/L

D-12.4 mEq/L

2- Binding of calcium to albumin is:

A-Heat-dependent

B-Neural-dependent

C-pH-dependent

D-Water-dependent

3- Which of the following is a bone eroding Cell?

A-Osteoclasts

B-Osteoblasts

C-Osteocytes

D-Monocytes

4- The majority of bone salts are in form of:

A-ionized Ca⁺⁺

B-Hydroxyapatite crystals

C-Carbonate ions

D-Proteoglycans

5- the first line of defense against changes in calcium levels is :

A-Non-hormonal Mechanisms

B-Hormonal Mechanisms

C-Vitamin D

D-A&B

6- Vitamin D in extreme quantities cause:

A-bone calcification

B-PTH secretion

C- Tetany

D-absorption of bone

7-PTH control vitamin D through:

A-25 Transferases

B-1,25 dehydrogenase

C-1,alpha hydroxylase

D-beta Lipase

1-B 2-C 3-A 4-B 5-A 6-D 7-C

Pht433@gmail.com

Done by: **Abdulmalek Al-Qahtani** Revised by: Rahma Alshehri

Endocrine Block