Neuro-Block: Physiolog

Pain Modulation

By Laiche Djouhri, PhD

Associate Professor

Dept. of Physiology

Email: Idjouhri@ksu.edu.sa Ext:71044

Week 7 Lecture

Chapter 49 (Guyton & Hall) **Somatic Sensations:II** Pain, headache and Thermal Sensations

Objectives

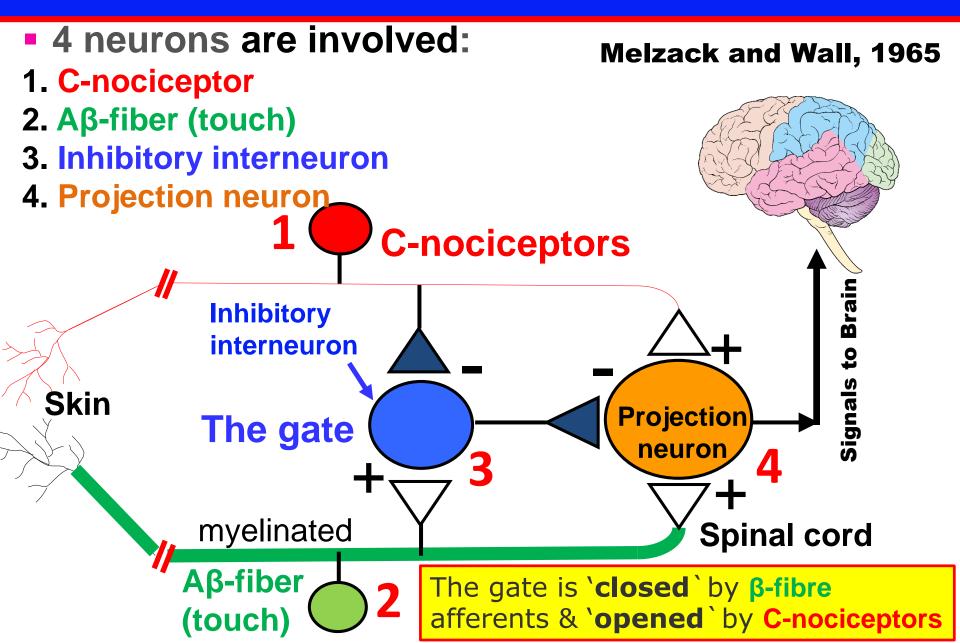
By the end of this session you are expected to be able to:

- Describe how pain is modulated at the spinal cord level (Gate control theory)
- Describe the built-in pain suppression
 `Analgesia`` system and how this descending
 Inhibitory System is activated from the brain
- Describe the brain's opioid system
- Appreciate that pain can also be facilitated

Pain Modulation

What is Pain Modulation?

A decrease or an increase in the sensation of pain caused by inhibition or facilitation of pain signal.

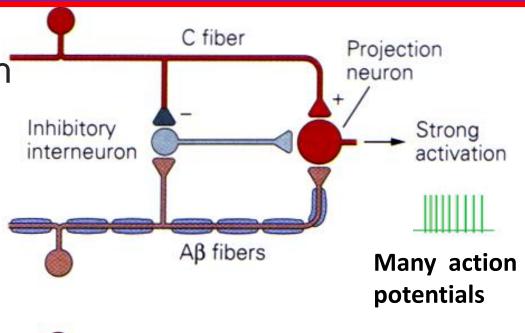

INHIBITION: nociceptive input can be inhibited by:

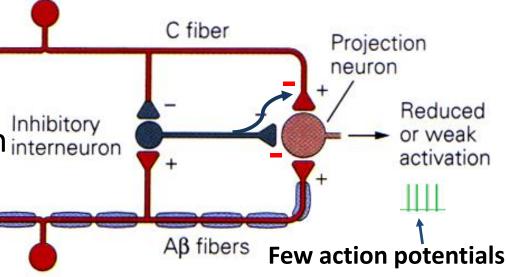
- Spinal (segmental) inhibition: Gate control theory
- Supra-spinal (descending) inhibition or the Built-in analgesic system

FACILITATION

- Peripheral sensitization (release of chemicals after tissue injury)
- Central sensitization (Dis-inhibition)

Spinal Inhibition: Gate Control Theory-1


What are the neurotransmitters that are released from neurons involved in the gate control theory?


4 neurons are involved:

- C-nociceptor: (substance P)
- Aβ-fiber (touch): (Glutamate)
- Inhibitory interneuron: (GABA, Glycine or encephalin (endogenous opioid))
- Projection neuron: (glutamate)

Gate Control of Pain-2

- Projection neuron receives input from both C-fibers and Aß-fibers
- Firing of C fibers inhibits the inhibitory interneuron
- Firing of the Aß fibers activates the inhibitory interneuron
- Inhibitory interneuron causes presynaptic inhibition of C-fibers and postsynaptic inhibition of projection n.

Gate Control of Pain-3

Activity opens the gate

Opening and closing of the gate is dependent on the balance between activity

and Aβ-touch receptors

This gate prevents the pain signals from reaching the brain.

in C-nociceptors

Other sensory nerves Activity closes the gate eg rubbing the affected area) Projection or transmission neuron

Messages to

the brain

Messages

from the

hrain.

- The gate is under control of higher centers.
- The brain sends nerve impulses that travel down the spinal cord to influence the gate.

Gate Control Theory-4

The gate-control theory is the basis for:

- > Rubbing the traumatized area such as a bumped head
 - The initial trauma activates the A-δ and, eventually, C fibers
 - Rubbing stimulates the A-beta (touch) fibers, which activate inhibitory interneuron to close the spinal gate
 - This inhibits transmission of the pain singal
- > The use of non-noxious cold & heat to relief pain
- The use of transcutaneous electrical nerve stimulation (TENS) for pain relief (see next slide).

Transcutaneous Electrical Nerve Stimulation (TENS)

- The gate-control theory is also the basis for the use of TENS for pain relief.
- Uses a battery-operated unit with electrodes applied to the skin to produce a tingling, vibrating, or buzzing sensation in the area of pain (self-operated)
- Decreases pain for up to several hours, by stimulating the nonpain receptors in the same area as the fibers that transmit pain
- Post operative pain, osteoarthritis back pain, and other types of pain.

Other Ways of Reducing Pain

- Remove the painful stimulus
 - Withdrawal reflex
 - Treat injury or pathology
 - Analgesics
- Block impulse conduction in peripheral nerve
 - Local anesthetics
- Block synaptic transmission in CNS
 - General anesthesia
 - Narcotic analgesics (e.g. morphine)
- Activate body's own pain control system
- Alternative methods (Acupuncture)

Alternative Inhibition of Pain Transmission:

Acupuncture

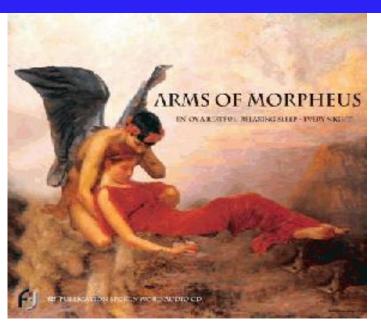
- Extremely fine needles are inserted at certain sites in the body for treating pain
- Is a treatment derived from ancient Chinese medicine
- Technique for balancing the flow of energy (Traditional Chinese medicine)
- Western GPs see it as points to stimulate nerves, muscles and connective tissue.
- It is thought to boost the body's natural painkillers (opioids) and increases blood flow.

What are Opioids?

- Opioids: refer to drugs in a generic sense, natural or synthetic, with morphine-like actions
- Opiates: restricted to synthetic morphine-like drugs

Opium (أفيون): extract of juice of the poppy (Papaver Somniferum)

- Used as agent for analgesia, euphoria, sleep and diarrhea.
- Contains 12% morphine and many alkaloids related to morphine.
- Used with alcohol to treat most diseases



الأفيون Opium

Papaver Somniferum الخشخاش المنوم

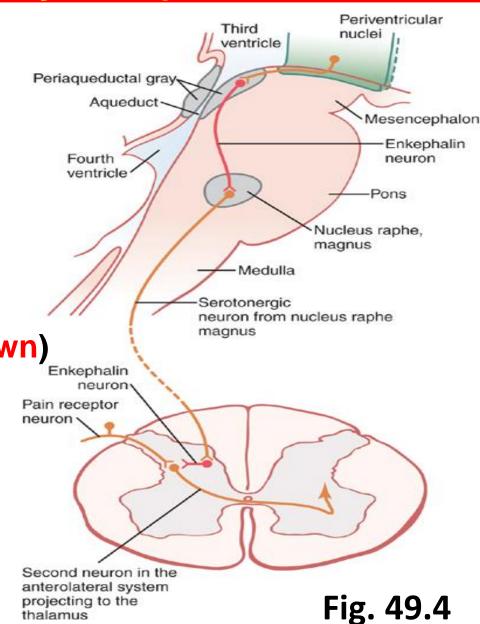
What is Morphine?

- Morphine is named after Morpheus, the Greek god of dreams. Morpheus is the son of <u>Hypnos</u>, the god of sleep.
- God's own gift!!
- Was isolated from opium, in 1805 by Friedrich Wilhelm Adam Sertürner, a German pharmacist

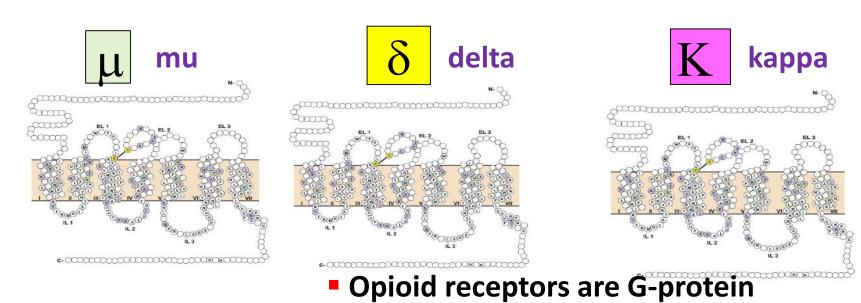
Pain Modulation

INHIBITION: nociceptive input can be inhibited by:

- Spinal (segmental) inhibition: Gate control theory
- Supra-spinal (descending) inhibition or the Built-in analgesic system


FACILITATION

- Peripheral sensitization (release of chemicals after tissue injury)
- Central sensitization (Dis-inhibition)


Descending Pain Control System (The Built-in Analgesic System)

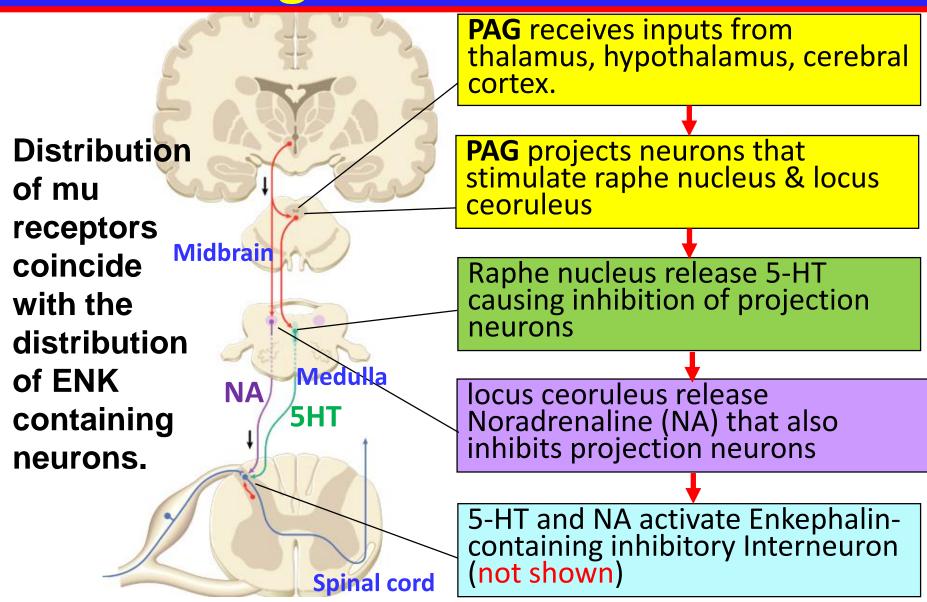
- 1. Periventricular nucleus project to PAG (4t ventricle)
- 2. Periaqueductal Gray(PAG)
 - Opioid Receptors
 - Projects to Raphe Nuclei
- 3. Raphe nucleus
 - Projects to dorsal horn
 - Release serotonin
- 4. Locus ceruleus (not shown)
 - Projects to dorsal horn
 - Release noradrenaline
- 5. Enkephalin-containing interneurons in spinal cord

The system uses endogenous opioids (natural pain killers)

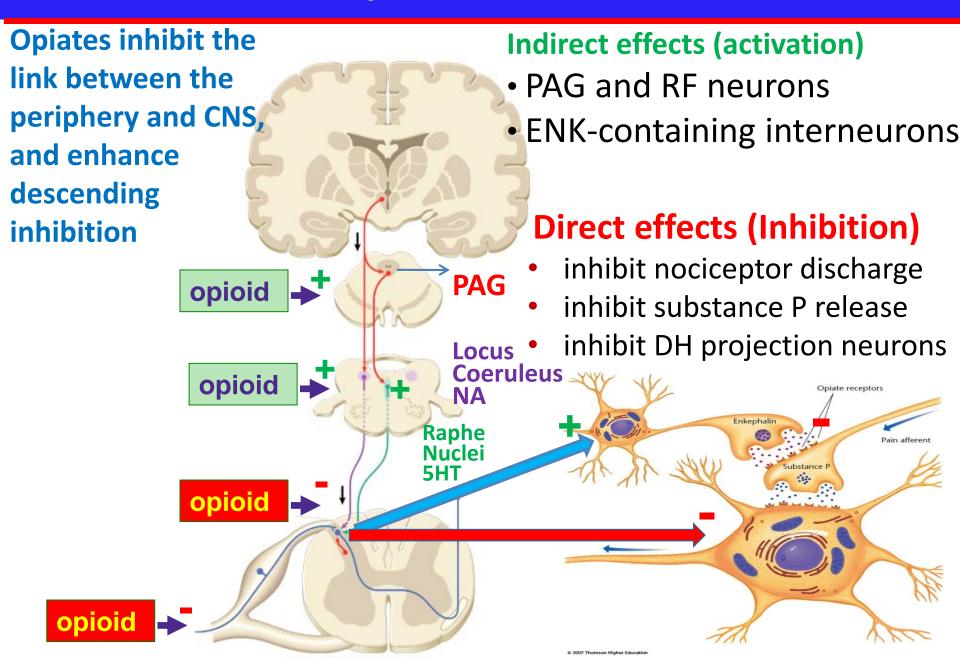
Endogenous Opioid Peptides & Opioid Receptors

Endogenous Opioids

- Enkephalins
- Endorphins
- Dynorphins


coupled receptors

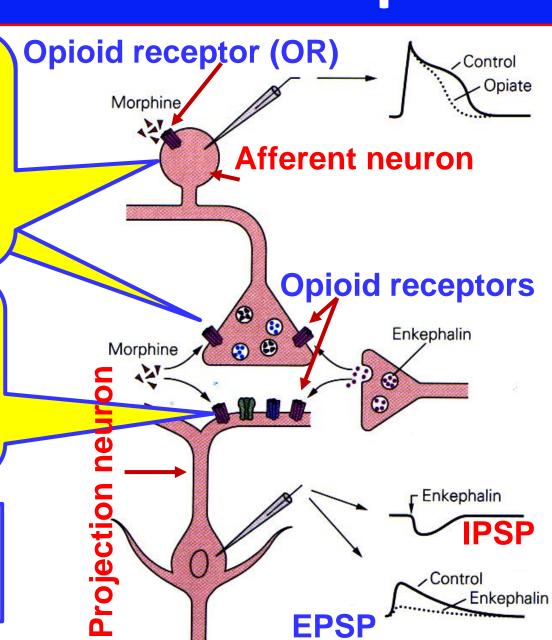
- CNS distribution:
 - Cerebral cortex
 - Amygdala
 - Thalamus
 - Hypothalamus
 - Midbrain (PAG)
 - Spinal cord



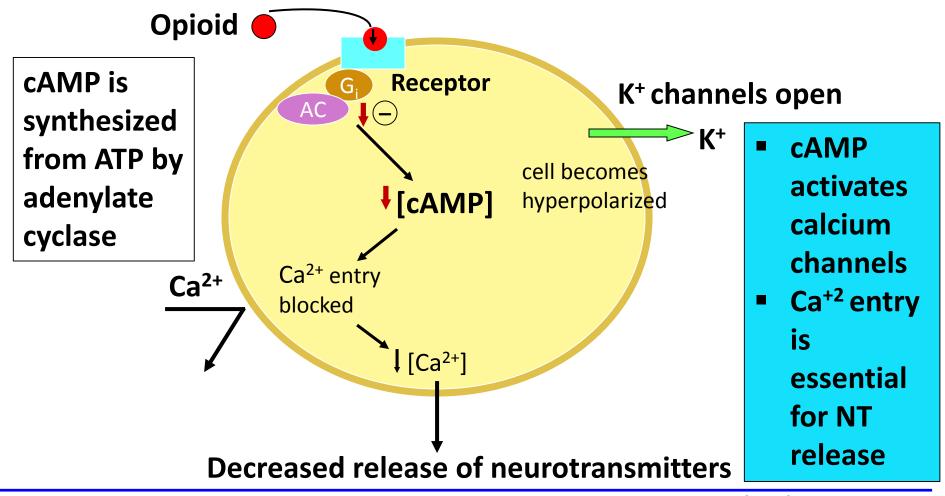
Periphery

How Does the Analgesic System cause Analgesia?

Sites of Actions of Opiates on Pain Transmission



Pain Modulation: Effects of opioids


Activation of opioid receptors on cell bodies of DRG neurons and on pre-synaptic terminals causes a decrease in Ca⁺⁺ influx resulting in a decrease in release of glutamate & Substance P

Activation of post-synaptic ORs hyperpolarizes the projection neuron by causing an increase in K⁺ conductance

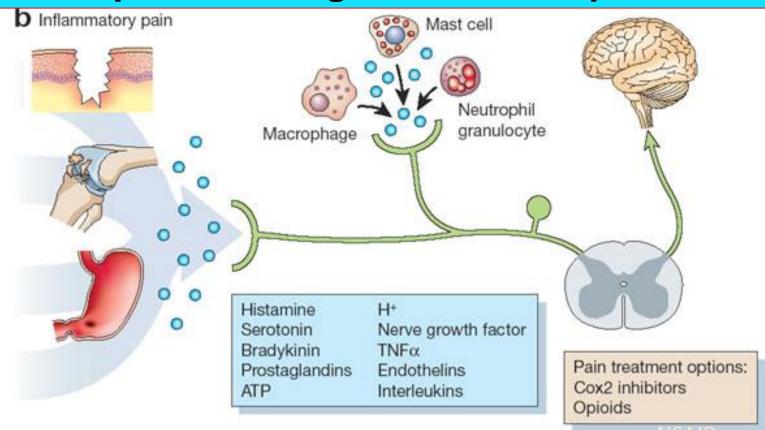
↓ duration and size of the EPSP in the projection neuron

Cellular Actions of Opioids

- Reduce cAMP synthesis by inhibiting adenylate cyclase (AC).
- Inhibit opening of Ca⁺² channels → inhibition of transmitter release.
- Facilitate opening of K⁺ channels causing hyperpolarization

Pain Modulation

INHIBITION: nociceptive input can be inhibited by:


- Spinal (segmental) inhibition: Gate control theory
- Supra-spinal (descending) inhibition or the Built-in analgesic system

FACILITATION

- Peripheral sensitization (release of chemicals after tissue injury)
- Central sensitization (Dis-inhibition)

Pain Facilitation: Peripheral Sensitisation (PS)

The various released chemicals can sensitize nociceptors leading to enhanced pain sensitivity

PS also occurs during neuropathic pain states

What is Neuropathic Pain (NP)?

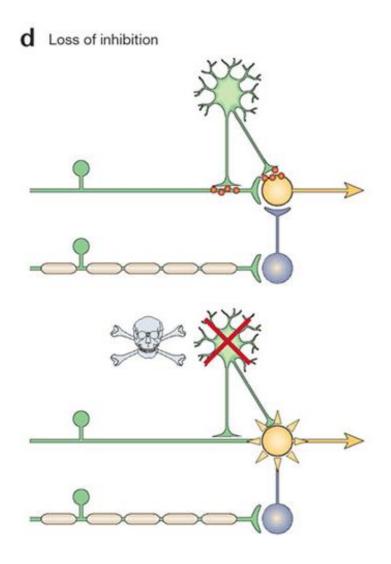
"Pain initiated or caused by a primary lesion or dysfunction in the nervous system" (IASP), 1994

- Features of NP
 - About 5% of the world population
 - Resistant to the current analgesic therapy
 - Can persist for years
- Classification of NP:
 - Central NP: Damage of CNS (e.g. after stroke)
 - Peripheral NP: damage of PNS (e.g. diabetes)
- Clinical Symptoms of Peripheral NP Hyperalgesia, Allodynia & Spontaneous Pain

Diseases that may cause Neuropathic Pain

- Infection (e.g. postherptic neuroalgia caused by shingles)
- HIV
- Autoimmune diseases (e.g. multiple sclerosis)
- Vascular disease (e.g. stroke)
- Cancer.
- Metabolic disease (diabetes)
- Trauma/lesion (axotomy or nerve entrapment).
- Chemotherapy

Herpes zoster


Varicella zoster virus

Herpes simplex (does not cause NP)

Herpes simplex virus

Pain Modulation: Disinhibition

- Pain transmission is controlled by inhibitory interneurons
- Loss of these inhibitory interneurons after excessive release of glutamate.
- Result in increased excitability of projection neurons and thus

enhanced pain

Summary

- Pain can be modulated by the balance of activity between nociceptive and non-nociceptive afferent inputs (the gate control theory)
- Pain can be controlled by central mechanisms through pain control descending inhibitory pathways
- Endogenous opioids contribute to the pain control system
- Serotonin and noradrenaline are the other nonopioid neurotransmitters that are involved in pain control mechanisms
- Pain modulation is bidirectional: can be inhibited or facilitated (e.g during chronic pain states)

