

(PLP) acts as a coenzyme for the following reactions:

Forms..?

- Pyridoxine (plants)
- Pyridoxal (animal source)
 - Pyridoxamine (animal)

Active form..?

All 3 are converted to pyridoxal phosphate (PLP) 90% in muscles. (next slide)

1. Condensation Reaction.

Formation of aminolevulinic acid (ALA) by ALA synthase.. The regulatory step in hemoglobin synthesis

It requires pyridoxal phosphate for formation of (ala)

2. Decarboxylation Reaction:

- Formation of Chatecholamines: Dopamine, norepinephrine and epinephrine.
- Formation of Histamine and Serotonin.

3. Transamination Reaction.

Alanine **Pvruvate** Glutamate

4. Deamination.

Figure 28.12. Some important metabolic roles of pyridoxal phosphate.

Figure 28.11. Structures of vitamin B₆.

Disorders of Vitamin B₆ Deficiency...

Causes..?

- -Dietary deficiency is rare, but it was observed in: (more common in females)
 - 1. Newborn infants fed on formulas low in B6
 - 2. Women on oral contraceptives
 - 3. Alcoholics
- -Isoniazid treatment for tuberculosis can lead to vitamin B_6 deficiency by forming inactive derivative with PLP.

Deficiency leads to ..?

- -Poor activity of PLP-dependent enzymes Causing:
 - Deficient amino acid metabolism
 - Deficient lipid metabolism
 - Deficient neurotransmitter synthesis [serotonin, epinephrine, norepinephrine and gamma amino butyric acid (GABA)]
- -PLP is involved in the synthesis of sphingolipids, Its deficiency leads to demyelination of nerves and consequent peripheral neuritis

Mild deficiency leads to:	Severe deficiency leads to:
Irritability Nervousness Depression	Peripheral neuropathy Convulsions

$Vitamin\ B_{12}$

Forms	 Cyanocobalamin Hydroxycobalamin Adenosylcobalamin (major storage form in the liver) Methylcobalamin (mostly found in blood circulation) 	
Coenzyme	-Adenosylcobalamin and Methylcobalamin (Coenzymes for metabolic reactions) -Body can convert other cobalamins into active coenzymes see next slide	
Sources	 Mainly found in animal liver bound to protein as Methylcobalamin 5'-deoxyadenosylcobalamin Not synthesized in the body and must be supplied in the diet 	Parie cel
Absorption + Stores	 Binds to intrinsic factor and absorbed by the ileum Intrinsic factor is a protein secreted by cells in the stomach Liver stores vitamin B₁₂ (4-5 mg) Only water soluble vitamin that is stored in the body 	B ₁₂ pr

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

Importance..?

- 1-Essential for normal nervous system function and red blood cell maturation.
- 2-Required in 2 reactions:

Conversion of propionyl-CoA to succinyl-CoA

•The enzyme in this pathway, methyl-malonyl-CoA mutase, requires B₁₂

Conversion of homocysteine to methionine

 Methionine synthase requires B₁₂ in converting homocysteine to methionine

Tetrahydrofolate is the active form found in the body

Homocysteine re-methylation reaction is the only pathway where N⁵-methyl TH4 can be returned back to tetrahydrofolate pool..

Hence folate is trapped as → N⁵-methyltetrahydrofolate (folate trap)

This leads to folate <u>deficiency</u> and deficiency of other TH4 derivatives (N⁵-N¹⁰ methylene TH4 and N¹⁰ formyl TH4) required for purine and pyrimidine syntheses *TH4: Tetrahydrofolate

Interconversion between TH4 carrier of "one-carbon units"

We don't have to memorize the structure

Disorders of Vitamin B₁₂ Deficiency

Pernicious anemia

Megaloblastic anemia

Vitamin B₁₂ deficiency is mainly due to the deficiency of intrinsic factor

Demyelination

Myelin sheath of neurons is chemically unstable and damaged

Neuropathy

Peripheral nerve damage

break down the lipid for this myelination, and nerves will be affected.

Neuropsychiatric symptoms of Vitamin B_{12} Deficiency..?

affect both sensory and motor

Neurological symptoms	Psychiatric symptoms
Paraesthesia (abnormal sensation) of hands and feet	Confusion and memory loss
Reduced perception of vibration and position	Depression
Absence of reflexes eg: babinski reflex	Unstable mood
Unsteady gait and balance (ataxia)	

Vitamins	B6	B12	
Forms	 Pyridoxine Pyridoxal Pyridoxamine 	 Cyanocobalamin Hydroxycobalamin Adenosylcobalamin (in liver) Methylcobalamin (in blood circulation) 	
Active Form	Pyridoxal phosphate	Adenosylcobalamin, Methylcobalamin	
Function	Work as coenzyme for: 1. Transamination 2. Deamination 3. Decarboxylation 4. Condensation reactions	Conversion of Propionyl-CoA to succinyl-CoA Conversion of Homocysteine to methionine	
Dietary deficiency observed in	*Rare • Newborn infants fed on formulas low in B6 • Women on oral contraceptives • Alcoholics • Isoniazid treatment for tuberculosis	patients with IF* such as: • Autoimmunity • Partial or total gastrectomy	
Deficiency diseases	 Deficient amino acid metabolism Deficient lipid metabolism Deficient neurotransmitter synthesis Demyelination of nerves and consequent peripheral neuritis 	Pernicious anemiaDemyelinationNeuropathy	
Symptoms	Mild deficiency leads to: Irritability, Nervousness, Depression Severe deficiency leads to: Peripheral neuropathy, Convulsions	Neurological symptoms: Paraesthesia of hands and feet Reduced perception of vibration and position Absence of reflexes, ataxia. Psychiatric symptoms: Confusion, memory loss, Depression, Unstable mood	

1. The active form of vitamin B6 is:

- A.pyridoxine
- B.hydroxycobalamin
- C.pyridoxal phosphate
- D.pyridoxamine

2. Vitamin B6 is involved in the formation of heme by which of the following reactions?

- A. decarboxylation
- B. condensation
- C. aminotransduction
- D. deamination

3. Vit B6 deficiency could results in :

- A. bleeding
- B. night blindness
- C. neural tube defects
- D. anexity

4.An other name of vitamin B12:

- A. riboflavin
- B. ascorbic acid
- C. retinol
- D. cobalamin

5.Vit B12 is mainly stored in liver in the form of :

- A. adenosylcobalamin
- B. methylcobalamin
- C. cyanocobalamin
- D. phylloquinone

6. Which of the following is a result of folate trapping?

- A. neuropathy
- B. ataxia
- C. depression
- D. pernicious anemia

7.Accumulatin of malonyl coA leads to:

- A. abnormal myelin synthesis
- B. decrease intrinsic factor levels
- C. inability to synthesize Pyrimidine
- D. abnormal cell division

