

Subtypes of Cerebral Infarction (Stroke)

Characteristics of stroke subtypes

Stroke type	Clinical course	Risk factors	Other clues	
1.Intracerebral hemorrhage	Gradual progression (min –hrs)	 HTN* Trauma Bleeding Certain races diatheses Ilicit drugs 	- May be precipitated by physical	
2.Subarachnoid hemorrhage	Abrupt onset of sudden, severe headache.	 Smoking HTN* Alcohol sympathomime tic drugs *Hypertension Genetic susceptibility (family history of subarachnoid hemorrhage) 	activity. Patient may have reduced alertness.	
3.Ischemic (thrombotic)	Stuttering progression with periods of improvement. Lacunes develop over hours or at most a few days; large artery ischemia may evolve over longer periods.	Atherosclerotic risk factors (age, smoking, DM, etc.). Men affected more commonly than women. May have history of TIA**. **transient ischemic attack.	May have neck bruit.	
4.Ischemic (embolic)	Sudden onset with deficit maximal at onset. Clinical findings may improve quickly.	Atherosclerotic risk factors. Men affected more commonly than women. History of heart disease	Can be precipitated by getting up at night to urinate, or sudden coughing or sneezing.	

Globally:

- Stroke is the 2nd most common cause of mortality
- Stroke is the 3rd most common cause of disability

	Stroke		
	High-income countries	Low-income countries	
Incidence	↓	^	 Men > women(at younger but not older ages) Women> Men (≥75 year old)
Mortality	↓	↓	

The absolute number of people with stroke, stroke survivors, stroke-related deaths, and the global burden of stroke-related disability is:

high and increasing

The mechanism of **cell death** involves calcium-induced **calpain-mediated proteolysis** of brain tissue

Substrates for calpain include:

- Cytoskeletal proteins
- Membrane proteins
- Regulatory and signaling proteins

Necrosis	Apoptosis
is commonly observed early after severe ischemic insults	occurs with more mild insults and with longer survival periods

Oxidative stress

Oxidative stress

Defintion..?

- A condition in which cells are subjected to:
- ✓ excessive levels of Reactive oxidizing species (Oxygen or nitrative species),
- ✓ they are unable to counterbalance their deleterious effects with antioxidants.

Implicated in..?

the ageing process & in many diseases

(e.g., atherosclerosis, cancer, neurodegenerative diseases, stroke)

They regulate neuronal signaling in both CNS & PNS.

They are required for essential processes as **learning & memory** formation

The Role of (ROS+RNS)in Normal Brain Physiology..?

mainly generated by microglia & astrocytes

They modulate synaptic transmission & non-synaptic communication between neurons & glia

During periods of increased neuronal activity, ROS & RNS diffuse to the myelin sheath of oligodendrocytes activating

Protein kinase C (**PKC**) → post translational modification of myelin basic protein (**MBP**) by phosphorylation

Oxidative stress

Molecular & Vascular effects of ROS in ischemic stroke

Molecular effects:

- DNA damage
- Lipid peroxidation of unsaturated fatty acids
- Protein denaturation
- Inactivation of enzymes
- •Cell **signaling** effects (e.g., release of Ca²⁺ from intracellular stores)
- Cytoskeletal damage
- Chemotaxis

Vascular effects

- Altered vascular tone and cerebral blood flow
- Increased platelet aggregability
- Increased endothelial cell permeability (Edema)

The role of NO in the pathophysiology of cerebral ischemia

Ischemia → abnormal NO production

This may be both beneficial and detrimental, depending upon when and where NO is released

Endothelial NOS (eNOS) → improving vascular dilation and perfusion

Neuronal NOS (nNOS)

Inducible NOS (iNOS)
-Generally occurs in a
delayed fashion after brain
ischemia and trauma and is
associated with
inflammatory processes.

(i.e. beneficial).

has detrimental (harmful) effects.

Biochemical Changes in the Brain During Ischemia

Ischemia will lead to the decrease of: blood flow, oxygen and nutrients in the cerebral arteries.

This will in turn cause energy depletion, where there will be a deficit of ATP and creatine phosphate. This will result in one of two situations:

Neurochemical response

Neurochemical Response to Ischemia

extracellular levels of various neurotransmitters are increased, such as:

- Glutamate
- Glycine
- GABA
- Dopamine

Blood Tests in Patients With Brain Ischemia or Hemorrhage

Tests include:

CBC (hemoglobin, hematocrit, white blood cell count and platelet count)

Prothrombin time, international normalized ratio (INR) and activated partial thromboplatin time

Thrombin time and/or ecarin clotthing time (recommended if patient is known or suspected to be taking a direct thrombin inhibitor or a direct factor Xa inhibitor)

Blood lipis, including total, high density lipoprotien (HDL), low density lipoprotien (LDL), cholestrol and triglycerides Cardiac enzymes and troponin

Potential Biochemical Intervention in Cerebral Ischemia

Examples include:

Inhibitors of glutamate release

Ca2+ channel blockers

Nitric oxide synthase inhibitors and free

radical inhibition Calpain inhibitors

MCQs

1-which one of the following cell death mechanisms happen after severe ischemic insults?

a-necrosis b-apoptosis c-dystrophic calcification

2-oxidative stress has implicated in which one of the following diseases?

a-parkinson b-multiple sclerosis c-night blindness

3-ROS and RNS are mainly generated by microglia and astrocyte?

a-true b-false

4-which one of the following is a substance for calpain?

a-cytoskeletal proteins b-membrane proteins c-regulatory and signaling proteins d-all of them

5-a condition in which cells are subjected to excessive levels of reactive oxidizing species?

a-oxidation stress b- metabolic stress c-biochemical response d-none of them

6-NO production by nNOS and iNOS has a beneficial effects?

\a-true b-false

SAQs

Q1- list 4 molecular effects of ROS in ischemic stroke?

1-dna damage 2-proteins denaturation 3-inactivation of enzymes 4-chemotaxis

Q2-the brain is highly susceptible to ROS induced damage, why?

1-high conc of peroxidizable lipids 2-low levels of protective antioxidants

3-high O2 consumption 4-high levels of iron

Q3-explain the role of ROS and NOS in normal physiology of the brain?

1-they modulate the synaptic transmission and non synaptic communication between neurons and glia 2-they regulate neuronal signaling in both cns and pns

3-they are required for essential processes as learning and memory formation

Q4-list 3 various neurotransmitters that their extracellular levels will increase following cerebral ischemia?

1-glutamate 2-GABA 3- dopamine

