Vision Part 4

Physiology of Color Vision

Color index

- Further Explanation

Contents

3\& Color vision 4
\& Characteristics of color 4
\triangleleft Color vision theory5
\triangleleft Color vision cod 6
\& Ishihara charts 7
८ Color Blindness 8
$\stackrel{\text { s }}{ }$ Summary. 11
\triangleleft MCQs. 12
\diamond SAQs 13
Recommended Video!

COLOR VISION

Its the ability to discriminate between different colors

\triangleleft there are 3 primary colors(blue- red- green) sensed by cones in fovea \& appreciated within photopic vision (Cones).

\& sensation of extra spectral colors as white, yellow, orange, purple, can be produced by mixing properties of the blue \&red \& green in different combinations.
perception of white is due to equal stimulation of blue \& red \& green cones. There is no wave length corresponds to white, white
is a combination of all wave lengths in the spectrum. I

black means absence of

Characteristics of color

Colors have three attributes hue, intensity, and saturation (degree of
light (not darkness because in dark we do not see black only)
blind eye does not see
black rather, it sees nothing

Color vision theory (Young- Helmholtz theory) :

The color perception in the brain depends on the amount of activity in each of the 3 cones systems

Blue cone system:- has S pigment (blue sensation pigment) which respond to short wave length (440 nm senses the blue color)

1-_wave length of light

2_amount of light absorbed by each type of cones
we have 3 kinds of cones each has a specific photopigment (rhodopsin) \& is sensitive to one of the 3 primary colors

Red cone system:- has L

pigment (red sensation pigment) which respond to large wave length at or
$>535 \mathrm{~nm}$ so senses the red \& yellow color \& absorb light at the red portion.

Green cone system:- has M pigment (green sensation pigment) which respond to middle wave length (535 nm senses the green color \& less to yellow) \& absorb light at the green portion.
I. Each cone system respond to its color at I. a lower threshold than needed to sense

3 -frequency of impulses from each cone system to ganglion cells which is determined by wave length of light.

Color vision is coded by?

different responses in ganglion cells that depends upon the wave length of stimulus which determine frequency of impulses in ganglion cells
perception of orange is due to stimulation of 99% of red cones \& 42% of green cones \& 0% of blue cones
(so ratio is 99:42: 0)

```
perception of blue is due to stimulation of
    0% of red cones & 0% of green cones &
    97% of blue cones
    ( so ratio is 0:0: 97 )
```

green cones see

red cones see

Ishihara charts

Which are plates containing figures made up of colored spots on a background of similarly shaped coloed spots.

They are intentionally made up of colors that are liable to look the same as the background to an individual who is color blind

Some color blind individuals are unable to distinguish certain colors, whereas others have only a color weakness

Color Blindness

«There is Gene for rhodopsin \rightarrow on chromosome (3) .
\checkmark And Gene for blue sensitive s cone pigment \rightarrow on chromosome (7).
\triangleleft Gene for red \& green sensitive cone pigment \rightarrow on \mathbf{x} chromosome .

when a single group of color receptive cones is absent (due to absence of there gene) the person can not see or distinguish some colors from others

Red-green blindness (most common)

Green \& red cones see different colors between wave length 525-675 nm \& distinguish them.

If either of these cones are absent, the person can not distinguish 4 colors (red - green- yelloworange) \& he can not distinguish red from green (primary colors) so called (red - green blindness).
it is \mathbf{X}-linked disease.

Transmitted from females to their male sons, never occure in females as they have $2 \times$ chromosomes

EXCEPT if both x chromosomes lack the gene so Females will show the disease
_ Males have one $\mathbf{x} \&$ one y chromosome so if this one x chromosome miss the gene for color vision , he will get red-green color blindness
(their gene is on x chromosome).

- Females from color blind fathers are carriers transmit the disease to $1 / 2$ of their sons.

NOTE : Nopia in the end of the word means blindness, nomaly means = weakness
Prot $=$ RED , Deuter= GREEN , Trit=BLUE

Colour blinaness.

Each cone type contains a different light sensitive photo pigment. Colour blindness occurs when there is a defect in the genes that produce these photo pigments. Various combinations of defects can occur. 1) Missing one cone type
2) Missing two cone types
3) Missing all three cone types (vision is limited to the rods)
4) A cone type is made with a photo pigment different from normal.

1- there are 3 primary colors are sensed by:
A. Rods in fovea
B. Cons in the peripheral
C. Cons in fovea
D. Rods in the peripheral

2-Blue cone system respond to short wave length:
A. 440 nm
B. 442 nm
C. 441 nm
D. 445 nm

3-Which one of the following has only one cone system or loss of all (see only black or grey or have no color perception)
A. Dichromats
B. Monochromats
C. Trichromats
D. none

4- Deuteranomaly is a condition of?
A. Trichromats
B. Dichromats
C. Monochromats
D. None

5- there is a carrier women for red-green
blindness but her husband is normal, they
have 4 sons \& 2 daughters. There will be? blindness but her husband is normal, they
have 4 sons \& 2 daughters. There will be?
A. . All sons are affected
B. 2 sons \& one daughter are affected
C. One daughter is carrier $\& 2$ sons are normal
D. All daughters are carriers

1-what are the Colours attributes?
. hue, intensity, and saturation
2-what is Colour vision?
. It the ability to discriminate between different colors.
3- what are the three cons system?
.blue, red and green cons system
4-how does the white light form?
.by the combination of all the wavelengths of the spectrum.
5- pathway of color vision start with?
. Cones
6- where are cones found?
. In the fovea centralis .

THANK YOU FOR CHECKING OUR WORK!

BEST OF LUCK

Done By:

ヶ Shaima Alduaiji
\& Asmaa Alrusaies
\diamond Rana AlJunidel

IN COLORS
never seen bopare.
BE CREATIVE.

