

Physiology of Proprioception in Balance

Color index

- Important
- Further Explanation
- Note from Males' slides

Contents

\$	Mind map	3
\diamond	Proprioception	4
\diamond	Types of Proprioception	4
\diamond	Structures Concerned With Proprioc	eption7
\diamond	Peripheral Sensory Receptors	8
\diamond	Proprioceptors	9
\diamond	Adaptation of Receptors	10
\diamond	Nueral & Sensory Pathways	11
\diamond	Spinal Cords Tracts	12
\diamond	Ataxia & Gait Disturbances	14
\diamond	Brown Sequard Syndrome	15
\diamond	MCQs	16
\diamond	SAQs	17

Recommended Videos!

Please check out this link before viewing the file to know if there are any additions/changes or corrections. The same link will be used for all of our work Physiology Edit

Proprioception

Latin Proprius, meaning "one's own". "individual" and perception, is the sense of the relative position of neighboring parts of the body and strength of effort being employed in movement.

Exteroception: By which one perceives the outside world.

Interoception: By which one perceives pain, hunger...etc and the movement of internal organs. E.g.: peristalsis which is the typical movement of the esophagus, stomach, and intestine.

Mechanoreceptors: which detect mechanical compression or stretching of the receptor or of tissues adjacent to the receptor.

Spinal cord

- A Cross-section view of spinal cord- wider laterally than antero-posteriorly. In the middle on the dorsal side is a shallow groove called the posterior median sulcus and on the ventral side is the anterior median fissure (deeper).
- Center consist of gray matter shaped like a butterfly and there is an opening at the center
- Spinal cord is protected by <u>three layers</u> of meninges. The only difference from the brain is that the dural matter does not attach to bone. The dural matter is surrounded externally by a layer of cushioning fat called epidural space.

Gray Matte : Organization

- Dorsal half sensory roots and ganglia
- Ventral half motor roots
- Dorsal and ventral roots fuse laterally to form spinal nerves
- Four zones are evident within the gray matter – somatic sensory (SS), visceral sensory (VS), visceral motor (VM), and somatic motor (SM)

White Matter in the Spinal Cord

- Fibers run in three directions ascending, descending, and transversely
- Divided into three funiculi (columns)
 posterior, lateral, and anterior
- Each funiculus contains several fiber tracks
 - Fiber tract names reveal their origin and destination
 - Fiber tracts are composed of axons with similar functions

6

AH .. WE KNOW

ALL THAT ;) TOO!

Only in Males' Slides

Peripheral Sensory Receptors

- Sensory receptors classified according to:
- 1. Location 2. Type of stimulus detected 3. Structure
 - **Encapsulated Nerve Endings**
 - ♦Consist of one or more end fibers of sensory neurons
 - ♦Enclosed in connective tissue
 - ♦Include four main types:
 - ✓ Meissner's corpuscles
 - ✓ Pacinian corpuscles
 - ✓ Ruffini's corpuscles
 - ✓ Proprioceptor

Proprioceptors

- Encapsulated Nerve Endings
- Monitor stretch in locomotory organs
- Three types of proprioceptors:
- Muscle spindles measure the changing length of a muscle (Imbedded in the perimysium between muscle fascicles)
- 2. Golgi tendon organs located near the muscletendon junctionMonitor tension within tendons
- 3. Joint kinesthetic receptors Sensory nerve endings within the joint capsules

g

Static position sense: which means conscious perception of the orientation of the different parts of the body with respect to one another
 Rate of movement sense: also called kinesthesia or dynamic proprioception

Slides Only in Males'

Adaptation of Receptors

When a continuous sensory stimulus is applied, the receptor responds at a **high impulse rate at first** and then at a **progressively slower rate until finally the rate of action potentials decreases** to very few or often to none at all.

Receptor Potential of the Pacinian Corpuscle

For joint position and vibration sensation (Also Ruffini's Endings)

The receptor potential produced by compression induces a local circuit of current flow that spreads along nerve fiber.
The frequency of repetitive action potentials transmitted from sensory receptors increases approximately in proportion to the increase in receptor potential

Neural Pathways

Sensory Pathways

Afferent pathways

• Sensory information coming from the sensory receptors through peripheral nerves to the spinal cord and the brain

Efferent pathways

• Motor commands coming from the brain and spinal cord, through peripheral nerves to effecter organs

- Sensory systems allow us to detect, analyze respond to our environment
- Carry information from <u>sensory</u>
 <u>receptors</u> to the brain
- ♦ Conscious: reach cerebral cortex
- Unconscious: do not reach cerebral cortex
- Sensations from body reach the opposite side of the brain

Spinal Cord Tracts

These are known as sensory and motor pathways consisting of multi-neuron pathways connecting the CNS to the PNS.

At some point most pathways crossover (decussate)

Sensory pathways has 3 neurons: 1.Enters spinal cord from periphery 2.Crosses over ascends in spinal cord to thalamus 3.Projects to somatosensory cortex

Ascending (Sensory) Pathways						
1.Dorsal column pathway	2.Posterior and anterior spinocerebellar pathways	3.Spinothalamic pathway				
carries signal of fine touch, pressure, vibration , stereognosis and concious proprioception	Carry subsconcious proprioception.	carries signals of pain, temperature, deep pressure, and course touch				
ascends up dorsal white column in fasciculus gracilis or cutaneatus to medulla oblongata to the thalamus to primary somatosensory cortex (post central gyrus).	Dorsal gray horn- to lateral column- to medulla oblongata- to pons – to cerebellum.	From psterior gray horn decussate into lateral and anterior funiculi up to the thalamus to primary somatosensory cortex (postcentra gyrus).				

Pathway	Carries	1 st neuron	2 st neuron	3 st neuron	Damage	
Dorsal column pathway	 Fine touch 2 point discrimination Pressure Vibration Stereognosis¹ Conscious proprioceptio n signals 	Enters spinal cord through dorsal root ascends to Medulla (brain stem)	Neuron crosses over in medulla ascends to thalamus	Neuron projects to somatosens ory cortex	Sensory ataxia -Patient staggers cannot perceive position or movement of legs -Visual clues help movement	1
Spino- cerebellar pathway	•Unconscious proprioception •Signals receptors in muscles & joints	Enters spinal cord through dorsal root	Ascends to cerebellum	Neuron to cortex, hence unconscious	Cerebellar ataxia -Clumsy movements - Incoordination of limbs. -wide-based, reeling gait (ataxia) -Alcoholic intoxication produces similar effects	

1: the mental perception of depth or three-dimensionality by the senses.

13]

Ataxia & Gait Disturbances

Result from any condition that affects the central and peripheral nervous systems

Motor Ataxia

- ♦ Caused by cerebellar disorders
- Intact sensory receptors and afferent pathways
- Integration of proprioception is faulty
- Midline cerebellar lesions cause truncal ataxia
- Lateral cerebellar lesions cause limb ataxia
- Thalamic infarcts may cause contra lateral ataxia with sensory loss
- N.B cerebellar ataxia will discussed later with cerebellum

Sensory Ataxia

- Failure of proprioceptive information to the CNS
- May be due to disorders of spinal cord or peripheral nerves
- Can be compensated for by visual inputs

Brown Sequard Syndrome Hemisection Of Spinal Cord

Contralateral Loss				
Loss of pain and temp	Lateral Spinothalamic			
Loss of crude touch and Pressure	Ventral Spinothalamic			
Minor Contralat Muscle Weakness	Ventral Corticospinal			
Leg Ataxia	Ventral Spinocerebellar			
Ipsilateral Loss				
Fine touch, Vibration, Proprioception	Dorsal Column			
Leg Ataxia	Dorsal Spinocerebellar			
Spastic Paresis below lesion	Lateral Corticospinal			
Flaccid Paralysis	Ventral horn destruction			

Slides Only in Males'

1.A 2.C 3.A 4.B 5.A 6.B 7.C

1- where dose the Golgi tendon organs is located?

- A. Near the muscle-tendon junction
- B. Golgi apparatus
- C. Bones
- D. The large muscles of the body

2-the unconscious sensory pathway is reaches the?

- A. Spinal cord
- B. Brainstem
- C. Cerebellum
- D. Cerebral cortex

3-how the Sensations from body reach reach the brain?

- A. Opposite side
- B. Same side
- C. Both
- D. Same

4-the spinocerebellar pathway has how many neurons?

- A. 1
- B. 2
- C. 3
- D. 4

5- Alcoholic intoxication produces similar to?

- A. Spinocerebellar tract damage
- B. Dorsal column damage
- C. Vestibulocerebellar tract damage
- D. None

6- signals that carry by the spinocerebellar tract is?

- A. Fine touch
- B. Unconscious proprioception
- C. Subconscious proprioception
- D. Course touch

7-sensory ataxia is happened due to damage of tract?

- A. Pontocerebellum
- B. Spinocerebellum
- C. Vestibulocerebellum
- D. Dorsal column

8-which one of these is not a proprioception pathway?

- A. Anterior spinocerebellum
- B. Posterior spinocerebellum
- C. Spinothalamus
- D. Dorsal column

1-Give me an example of proprioception?

When we close our eyes we can walk and this is important for blind people

2-What are the three types of Proprioceptors?

Muscle spindles Golgi tendon organs Joint kinesthetic receptors

3-What are the Neural pathways? Afferent and Efferent

4-What is the different between conscious and unconscious pathway? Conscious: reach cerebral cortex Unconscious: do not reach cerebral cortex

5-Mention three of signals that carry by the dorsal column pathway? Fine touch, pressure, vibration, stereognosis and conscious proprioception

6-What is the different between sensory ataxia and motor ataxia ? (2 differences) sensory ataxia is due to disorder in spinal cord or peripheral nerves but motor ataxia is due to cerebellar lesion

sensory ataxia can be compensated by the visual input white the motor ataxia is not

THANK YOU FOR CHECKING OUR WORK! BEST OF LUCK

Done By:

♦ REEM ALASSAF
 ♦ Lolowah Alghuson
 ♦ Nouf Almasoud

