

Inner ear in balance and equilibrium

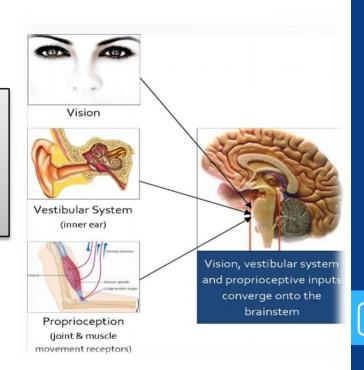
Color index

ImportantFurther Explanation

Contents

\diamond	Equilibrium3	
\diamond	Labyrinth (Inner ear)4	
\diamond	Vestibular apparatus5	
\diamond	Hair cell	
\diamond	Mechanism of action7	
\diamond	semicircular canal12	
\diamond	Neural connections16	
\diamond	MCQs17	
\diamond	SAQs	
\diamond	MCQs17	

Recommended Videos!


Please check out this link before viewing the file to know if there are any additions/changes or corrections. The same link will be used for all of our work <u>Physiology Edit</u>

Equilibrium

♦ It is Reflexes maintain body position at rest & movement.
♦ Through: Receptors of postural reflexes.

Receptors of postural reflexes are:

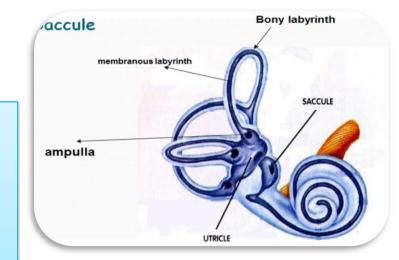
- 1- proprioceptors.
- 2- Visual (retinal) receptors. (cones and rods)
- 3- non-auditory membranous labyrinth.

3

Labyrinth (Inner ear)

Components :

1- Membranous labyrinth :


A-Auditory (cochlea for hearing).

B- Non- auditory (Vestibular apparatus for equilibrium).

Vestibular apparatus (Utricle Saccule & SCC)

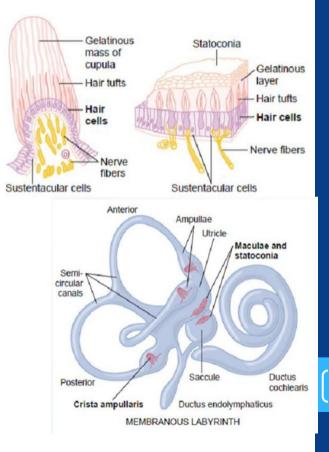
2- Bony labyrinth : (bony cochlea & 3 bony semicircular canals)

enclose the membranous labyrinth for protection.

Vestibular apparatus

Utricle & Saccule :

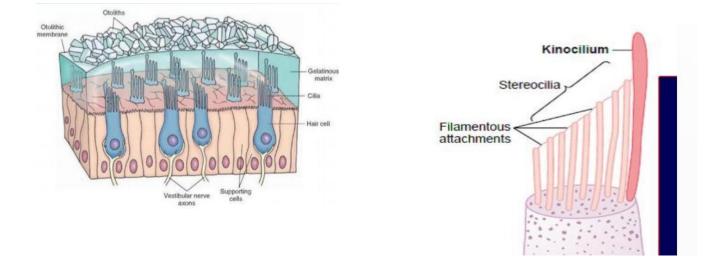
Receptor: Macula


Function: Linear acceleration & Orientation Movement by: statoconia (calcium carbonate)

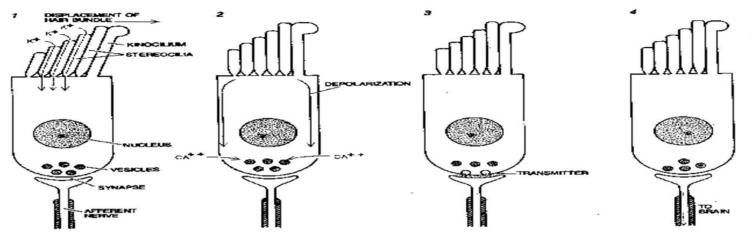
* Cilia of hair cells embedded in Gelatinous material of otolithes (calcium carbonate crystals).

 Semicircular canals : Receptor: Crista ampularis .
 Function: Angular acceleration (rotation).
 Movement by: Endolymph.

*Cilia of hair cells embedded in Gelatinous material of


Cupula.

5


Hair cell

- * Hair cell synapse with endings of the vestibular nerve.
- Hair cell has 30-150 (stereocilia) and one large cilium called (kinocilium).
- Both connected with thin filamentous attachments.
- Each cilium membrane has: channels for positive potassium ions.
- stimulated when the head bends forward & backward & laterally

h

Mechanism of action

1- bending of **stereocilia** <u>towards</u> kinocilium>>>>> depolarization & Ca entry & neurotransmitter release >>>>> - increase rate of impulses to 8th nerve fibers.

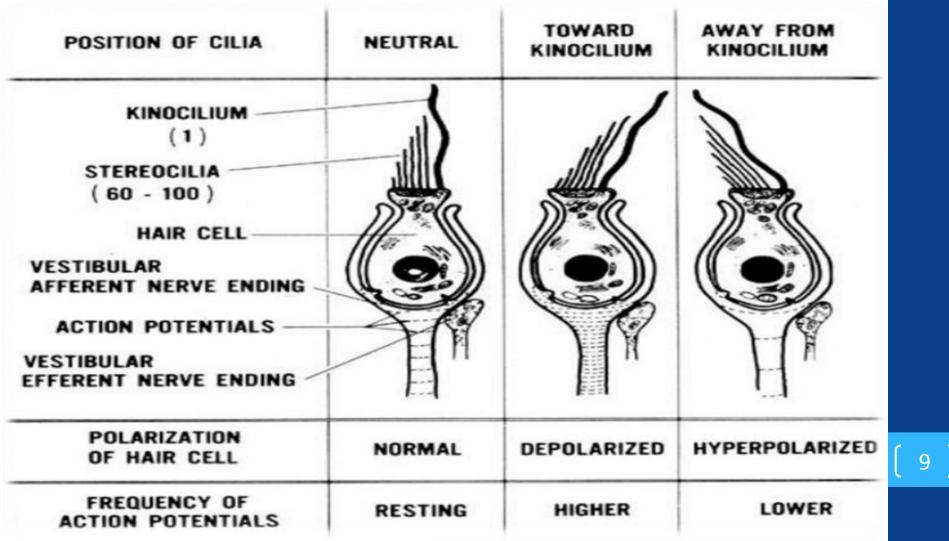
2- bending of **stereocilia** <u>away from</u> kinocilium >>>> hyperpolarization >>>> decrease rate of impulses to 8th nerve fibers.

- movement of hair cells by calcium carbonate crystals of hair cells by their weight

Mechanism of actions of macula in utricle:

1- orientation of head in space & maintenance of static equilibrium:-

A - in erect upright position (vertical position):


Right & Left utricle impulses balance each other , So no sensation of mal-equilibrium Bending of head **increased or decreased** the impulses and lead to:

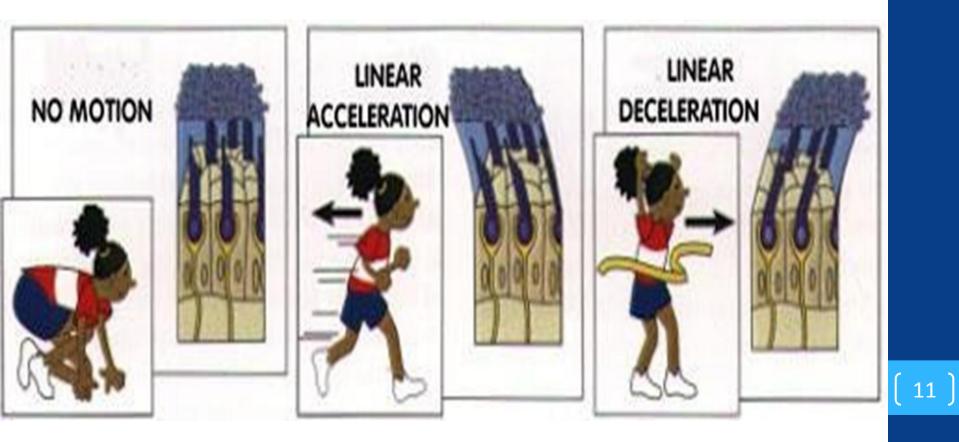
b-bending the head to one side :

statoconia crystals of hair cells fall to that side by their weight \rightarrow pull steriocilia to move **towards** kinocilium \rightarrow open potassium channels \rightarrow depolarization \rightarrow Ca entry \rightarrow neurotransmitter release \rightarrow increase rate of impulses to 8th nerve fibers.

At the same time steriocilia of the other side moves **away from** kinocilium \rightarrow close potassium Channels \rightarrow hyperpolarization \rightarrow decrease rate of impulses to 8th nerve fibers.

Mechanism of actions of macula in utricle:

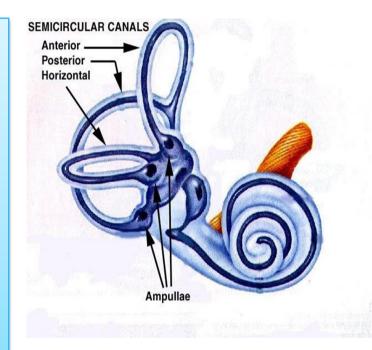
2- Detection of linear acceleration :


linear acceleration:- as at running or standing in a bus.

- At beginning of movement \rightarrow statoconia lag behind movement by <u>its inertia</u> \rightarrow fall backwards \rightarrow cilia moves backward \rightarrow person feels he is falling backwards .

Try to correct this by leaning forwards to shift statoconia & cillia anteriorly .

- At <u>deceleration</u> (Bus tries to stop) \rightarrow statoconia move forwards by <u>its</u> <u>momentum</u> \rightarrow person feels falling anteriorly Try to correct this by <u>leaning backwards</u> to shift statoconia & cilia <u>posteriorly</u>.

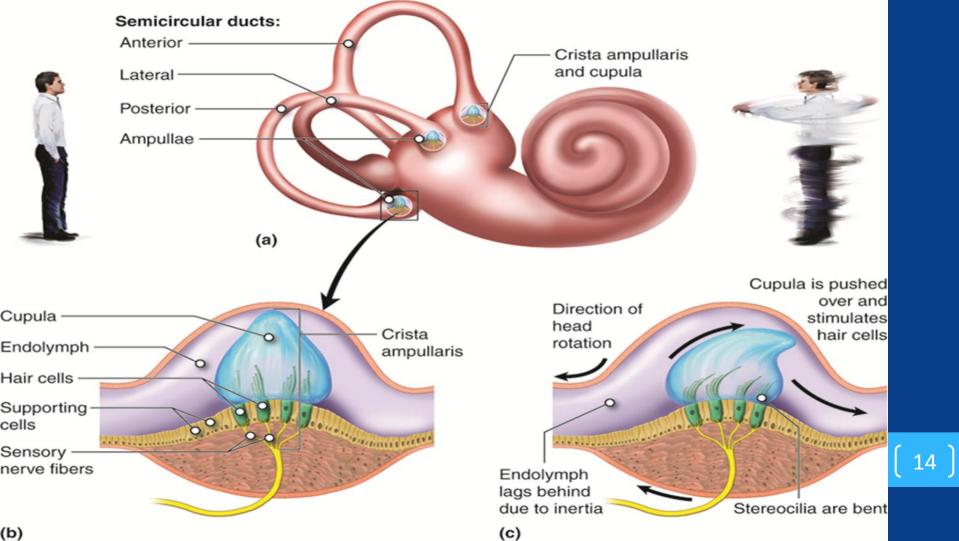


semicircular canal

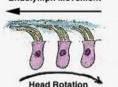
There are 3 SCC on each side:

- 1-Horizontal. 2-anterior.
 - 3-posterior.
- All are perpendicular to each other. - filled with Endolymph.
- Each has a dilated end called ampulla. Ampulla: has crista ampularis (as macula)
- -cilia embedded in a gelatinous mass called <mark>cupula</mark> .

Mechanism of actions of crista ampularis in SCC

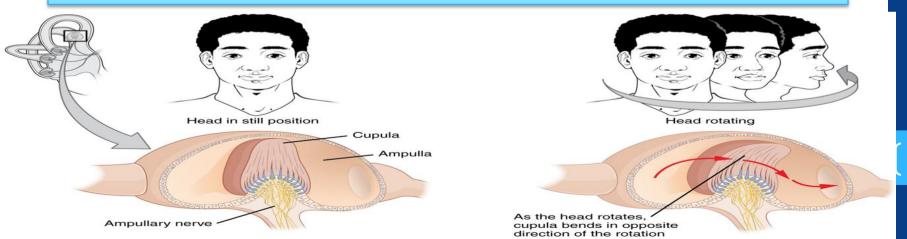

Detect & maintain posture during head rotation in any direction (angular acceleration)= rotation

they are stimulated at beginning & at end by changing direction or rate of rotation.
 <u>during rest</u>: equal discharge from SCC on both ears.


During movement :

- Bending cupula towards utricle (bending kinocilium towards utricle) → stimulate hair cells Bending cupula away from the utricle (bending kinocilium away from utricle) → inhibit hair cells

Mechanism of actions of crista ampularis in SCC



15

Rotation from left to right in horizontal plane:-

Rotation to right :

Endolymph \rightarrow opposite direction by Inertia from right to left \rightarrow the cilia of right side bent by **endolymph** <u>towards the kinocilium</u> \rightarrow <u>towards the utricle</u> \rightarrow depolarization \rightarrow impulses from right side increase \rightarrow In the other hand left side cilia bent <u>away</u> <u>from kinocilium</u> \rightarrow Impulses decrease from left side \rightarrow sensation of rotation to right.

Caloric test: stim of SCC by water hotter or colder than body temp in external auditory Canal \rightarrow convection currents in Endolymph \rightarrow motion of cupula.

Neural connections

Nerve fibers from maculae & cristae ampularis \rightarrow Vestibular nerve \rightarrow ipsilateral vestibular nucleus to :-

1- cerebellum: floculonodular lobe & dentate nucleus \rightarrow thalamus of the opposite side \rightarrow cortex of the opposite side (motor areas, superior temporal gyrus center for vertigo).

- 2- spinal cord (vestibulospinal tracts).
- 3- Reticular formation

4- Medial longitudinal bundle (for eye movements and nystagmus).

Effects of stimulation of S.C.C by rotation :

1- Vertigo: this false sensation of counter-rotation at end of rotation (or angular acceleration)

2- Nystagmus: jerky eye movements at the beginning & end of rotation to fix objects in the eye field.

3- bradycardia & hypotension.

4- increased muscle tone on same side of rotation to support the body & decreased muscle tone on the opposite side.

1- If the stereocilia move away from kinocilium what happen ?

- A. Hyperpolarization
- B. Depolarization

2-At the beginning of the liner acceleration ?

A. the statoconia lag behind and the person fells he is falling interiorly

B. the statoconia move forward and he try to correct this by leaning forward

- C. statoconia lag behind by its momentum
- D. the statoconia lag behind and try to correct this by leaning forward

3-false sensation of counter-rotation at end of rotation

A. Nystagmus

- B. increased muscle tone
- C. Vertigo

1-What are the receptors of postural reflexes ?

- . 1- proprioceptors.
- 2- Visual (retinal) receptors. (cones and rods)
- 3- non-auditory membranous labyrinth.

2-What is Nystagmus ?

. involuntary jerky eye movements .

3- What cause movement of hair cells?

. calcium carbonate crystals of hair cells by their weight

4- Hair cell synapse with

. endings of the vestibular nerve

THANK YOU FOR CHECKING OUR WORK! BEST OF LUCK

Done By:

♦ Sami Al-Qarni♦ Abdullah alfaleh

19