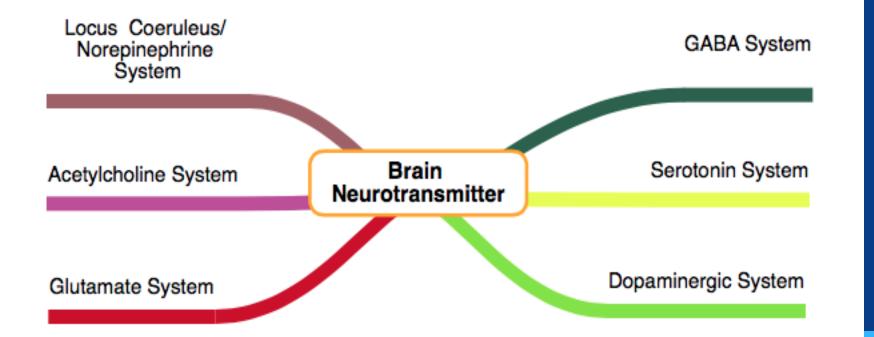


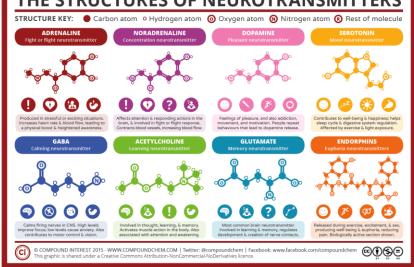
Color index

ImportantFurther Explanation

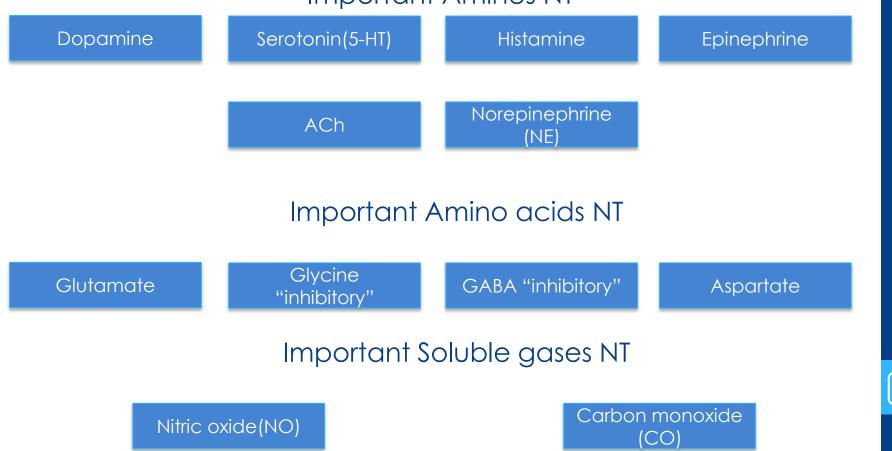

Contents

\diamond	Mind map	3
	Introduction	
\diamond	Locus Coeruleus/Norepinephrine System	7
\diamond	Acetylcholine System	8
\diamond	Gulatamate System	9
\diamond	GABA (Gamma Aminobutyric Acid) System.	10
\diamond	Serotonin System	11
\diamond	Dopaminergic System	12
\diamond	Summary	14
\diamond	MCQs	17
\diamond	SAQs	18

Recommended Video!


Please check out this link before viewing the file to know if there are any additions/changes or corrections. The same link will be used for all of our work <u>Physiology Edit</u>

They are chemical substances the are released/excreted by electrical impulses into the synaptic cleft from synaptic vesicles of the presynaptic membrane.

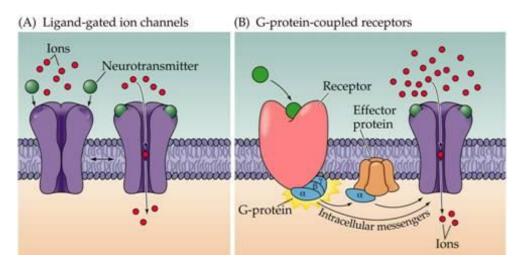

They then diffuse into the postsynaptic membrane where they bind to and activate the receptors present.

 This will either lead to an initiation of electrical signals or inhibition of the postsynaptic neuron.
 THE STRUCTURES OF NEUROTRANSMITTERS

Important Amines NT

The most important neurotransmitter's discussed and emphasized on are:

1. Aderenaline/NE; 2. ACH; 3. Glutamate; 4.GABA; 5.Serotonin; 6.Dopamine.


Types/classes of receptors:

Metabotropic receptors (G-protein-coupled receptor):

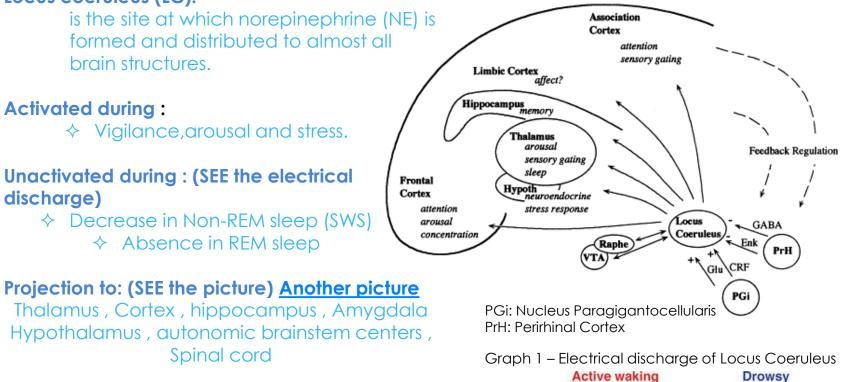
trans membrane receptor that act through a secondary messenger.

Ionotropic receptors (Ligand gated ion chnnles) :

ligand gated ion channel.

b

The Locus Coeruleus/Norepinephrine System


Locus coeruleus (LC):

is the site at which norepinephrine (NE) is formed and distributed to almost all brain structures.

Activated during :

 \diamond

- \diamond Vigilance, arousal and stress.
- Unactivated during : (SEE the electrical discharge)
 - \diamond Decrease in Non-REM sleep (SWS)
 - \diamond Absence in REM sleep

80 90 100 110 120 130 140

Time (sec)

firing rate spk/sec)

30 40 50 60 70

- Implicated in (Stress-related disorder)
 - \diamond Depression Withdrawal from some drugs of abuse \diamond panic disorder

Spinal cord

Acetylcholine System

Major neurotransmitter in the peripheral nervous system.

Produced and excreted by the neurons in the parietal lobes (basal forebrain and ponto-mesencephalic cholinergic complex) of the brain.

\diamond Association with:

♦Thought.

♦Memory

♦Muscular coordination.

 \diamond Speed of information processing in the brain.

 \diamond Production of the myelin sheath.

\diamond Disorder of the ACH System include:

♦ Alzheimer's Disease is the most common form of dementia associated with ACH.
 ♦ Mood swings.

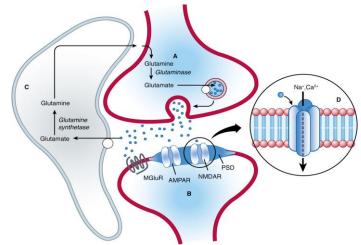
♦Bipolar disorders.

 \diamond Depression.

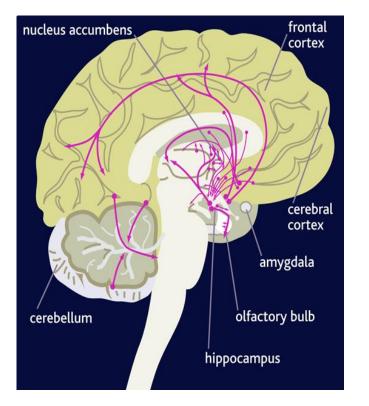
Glutamate System

♦ Most commonly found neurotransmitter in the brain.

 \diamond Always excitatory.


 \diamond It is formed by the Kreb's Cycle (alpha ketoregulation).

♦ Then Carried into astrocytes, converted to glutamine.


♦ Then passed onto glutaminergic neurons.

♦Its Function:

 $\diamond {\sf In}$ Learning and memory

GABA (Gamma Aminobutyric Acid) System

Considered the main inhibitory neurotransmitter of the CNS and is found in the retina.

♦ 50% of inhibitory synapses in the brain being GABA mediated (abundant).

\diamond Formed by decarboxylation of glutamate.

Three types of GABA receptors:
\$GABA (A&B) receptors widely distributed in the CNS.

♦GABA B receptor --> Metabotropic

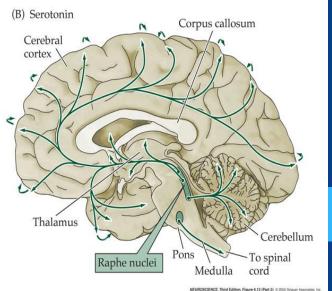
 \diamond GABA (C) receptors.

 \diamond Are only found in the retina.

Serotonin System

 \diamond Its Location:

Serotonergic neurons are primarily centered in the rostral and caudal raphe nuclei.

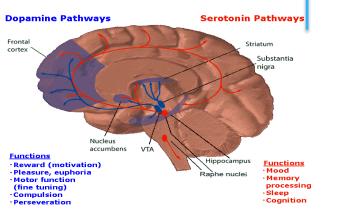

 \diamond Its projection:

 \diamond Ascending to the cerebral cortex and limbic and basal ganglia.

 \diamond Descending axons and terminate in the medulla and spinal cord.

Serotonin (5-HT) Disorders:

♦ Depression
♦ Anxiety

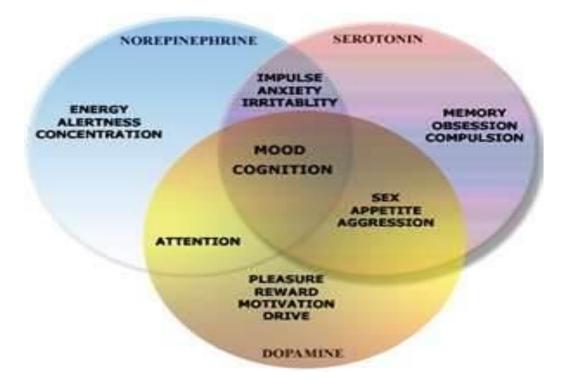


Dopaminergic System

Transmitted via three major pathways:

 ◇ FROM : Extends from the substantia nigra.
 ◇ TO :
 the caudate nucleus-putamen (neostriatum)
 ◇ Concerned with

sensory stimuli and movement.


♦ FROM :
 ventral tegmental area of the midbrain
 TO :
 the Mesolimbic forebrain (nucleus accumbens.)
 ♦ Concerned with
 Cognitive and emotional behavior

 ♦ FROM : Hypothalamus TO : Pituitary gland
 ♦ Concerned with influences the secretion of certain hormones, including prolactin

Dopaminergic neurons disorders:
1. Schizophrenia
2. Parkinson's Disease

Different Neurotransmitters With Individual and Interconnected Sensations

Neurotransmitter	Postsyna ptic effect	Derived from	Site of synthesis	Postsynaptic receptor	Fate	Functions
1. Acetyl choline (Ach)	Excitatory	Acetyl co-A + Choline	Cholinergic nerve endings	1. Nicotinic 2.Muscarinic	Broken by acetyl cholinesterase	Cognitive functions e.g. memory Peripheral action e.g. cardiovascular system
2. Catecholamine s i. Epinephrine (adrenaline)	Excitatory in some but inhibitory in other	Tyrosine from phenylalanine	Adrenal medulla and some CNS cells	Excites both a & β receptors	1.Catabolized to inactive product through COMT & MAO in liver	ANS. e.g. fight or flight, on heart, BP, gastrointestinal activity etc. Norepinehrine controls attention and arousal and sleep/wake cycle.
ii. Norepinephrine	Excitatory	Tyrosine, found in pons. Reticular formation, locus coerules, thalamus, and mid-brain	Begins inside axoplasm of adrenergic nerve ending	$\begin{array}{c} a_1 \ a_2 \\ \beta_1 \ \beta_2 \end{array}$	2.Reuptake into adrenergic nerve endings 3.Diffusion away from nerve endings to body fluid	

Summary

[14]

Neurotrans mitter	Postsynapt ic effect	Derived from	Site of synthesis	Postsynaptic receptor	Fate	Functions
iii. Dopamine	Excitatory	Tyrosine	CNS, concentrated in basal ganglia and dopamine pathways	D₁ to D₅ receptor	Same as above	Decreased dopamine in Parkinson's disease. Increased dopamine concentration causes Schizophrenia
3. Serotonin (5HT)	Excitatory	Tryptophan	1. CNS, 2. Gut (chromaffin cells) 3.Platelets 4. retina	5-HT ₁ to 5-HT ₇ 5-HT ₂ A receptor mediate platelet aggregation and smooth muscle contraction	Inactivated by MAO to form 5- hydroxyindoleacetic acid (5-HIAA) in pineal body it is converted to melatonin	 Mood control sleep pain sensation temperature, BP, and hormonal activity

Summary

(15)

Neurotransmi tter	Postsynapt ic effect	Derived from	Site of synthesis	Postsynaptic receptor	Fate	Functions
4. Glutamate	Excitatory 75% of excitatory transmissio n in the brain	By reductive amination of Kreb's cycle intermediate a –ketoglutarate	Brain and spinal cord	e.g. NMDA, AMPA and kainate receptors	It is cleared from the brain ECF by Na ⁺ dependent uptake system in neurons and neuroglia	Long term potentiation involved in memory and learning by causing Ca ⁺⁺ influx.
5. Gama amino butyric acid (GABA)	Major inhibitory mediator	Decarboxylation of glutamate by glutamate decarboxy-lase (GAD) in GABAergic neuron	CNS	 ♦ GABA A increase CI - conductance. ♦ GABA – B is metabotropic works with G – protein GABA transaminase catalyzes ♦ GABA – C found exclusively in the retina 	Metabolized by transaminati on to succinate in the citric acid cycle	GABA – A causes hyperpolarizatio n (inhibition) Anxiolytic drugs like benzodiazepine cause increase in Cl ⁻ entry into the cell & cause soothing effects. GABA – B cause increase conductance of K ⁺ into the cell

Summary

[16]

1- LC is activated during:

A. Stress B. Sleep C. Attention/vigilance D. All the above

2- Irregular firing of LC neurons occurs during :

- A. Vigilance and arousal
- B. Stress
- C. Sleep
- D. Quite wakefulness

3- Which is the most commonly found NT:

- A. Glutamate
- B. Serotonin
- C. Dopamine
- D. Acetylcholine

4- Which disorder is associated with acetylcholine:

- A. Schizophrenia
- B. Anxiety
- C. Alzheimer's disease
- D. Parkinson's disease

5- Which type of GABA receptors is only found in the reting?

A. GABA A B. GABA B C. GABA C D. All the above

6-Which NT is responsible for schizophrenia?

- A. Dopamine B. Serotonin C. Acetylcholine
- D. Norepinephrine

1- Why is the electrical discharge of locus coeruleus different during awakening and drowsiness?

Because the electrical discharge of LC is proportional to the amount of effort/attention exerted.

2- List two dopaminergic disorders: Schizophrenia and Parkinson's Disease

3-List three dopaminergic functions: Reward, motor function and pleasure/euphoria.

4- List three acetylcholine disorders:

Alzheimer's disease, bipolar disorder and mood swings.

THANK YOU FOR CHECKING OUR WORK! BEST OF LUCK

Done By:

♦ Rakan Barghouthi♦ Moath aleisa

A YEAR FROM NOW YOU WILL WISH YOU HAD STARTED () DAY~ Karen Lamb

19)