PLATELETS STRUCTURE AND FUNCTIONS COAGULATION MECHANISMS

DR SYED SHAHID HABIB MBBS DSDM PGDCR FCPS

Professor
Dept. of Physiology
College of Medicine & KKUH

Vessel injury

Antithrombogenic

(Favors fluid blood)

Thrombogenic

(Favors clotting)

OBJECTIVES

- * At the end of the lecture you should be able to describe.....
- 1.Describe formation and development of platelet
- 2. Recognoize different stages of haemostasis
- 3. Explain the role of platelets in haemostasis.
- 4.Recognize different clotting factors & cascade of clotting.
- 5.Describe the intrinsic, extrinsic and common pathway.
- 7. Recognize the role of thrombin in coagulation
- 8. Explain process of fibrinolysis and function of plasmin

HEMOSTASIS

The spontaneous arrest of bleeding from ruptured blood vessels

STEPS OF HEMOSTASIS

- 1. Vascular Spasm
- 2. Formation of platelet plug
- 3. Blood Coagulation & Clot Retraction
- 4. Fibrinolysis

1-VASCULAR SPASM (Vascular Constriction)

Immediately After injury there is localized Vasoconstriction.

- Causative Factors are three (3)
 - 1. Nervous reflexes
 - 2. Local myogenic spasm
 - 3. Local humoral factors
- * For smaller vessels
 - **❖** Platelets → Thromboxane A_2 (Vasoconstrictor)
- * Importance
 - ❖ Crushing injuries → Intense spasm → No lethal loss of blood
 TXA2 is inhibited by aspirin

A. VASOCONSTRICTION Basement membrane Arteriole smooth muscle Endothelium Site of injury ECM (collagen) Endothelin release Reflex vasoconstriction causes vasoconstriction

2-FORMATION OF PLATELET PLUG

❖ Importance of platelet plug → small vascular damage

Intact endothelium secrete prostacyclin

B. PRIMARY HEMOSTASIS **ADP** causes stickiness 2 Shape change Recruitment 3 Granule release (ADP, TXA₂) 1) Platelet adhesion Aggregation (hemostatic vWF plug Endothelium Basement Collagen membrane Serotonin & thromboxane A2 are vasoconstrictors

3-BLOOD COAGULATION Formation of Clot

- * <u>Blood clotting</u> is the transformation of blood from a liquid into a solid gel form
- * Pathways
 - * Intrinsic
 - * Extrinsic
- * Initiated by: Activator substances from traumatized vascular wall, platelets & blood proteins
- * Begins to develop in
 - ♦ 15-20 sec \rightarrow Minor trauma
 - \star 1-2 min. \rightarrow Severe trauma

C. SECONDARY HEMOSTASIS

D. THROMBUS AND ANTITHROMBOTIC EVENTS

PLATELETS

Formed by fragmentation from megakaryoctyes

SITE OF FORMATION

Bone-marrow

PLATELETS (Characteristics)

SHAPE: MINUTE ROUND OR OVAL DISCS

SIZE: 1-4 um IN DIAMETER

HALF LIFE: 7-10 DAYS

COUNT: 150,000 – 300,000/ microlitrer

LOCATION: 80% in blood & 20% in spleen

- Contractile, adhesive, cell fragments.
- * Store coagulation factors & enzymes
- Surface Binding sites for fibrinogen
- * Surface Glycoprotein Antigens-HPA1.

FUNCTIONAL CHARACTERISTICS

- Actin and Myosin Molecules
- •Endoplasmic Reticulum and Golgi Apparatus
- •Mitochondria
- •Enzyme Systems For Synthesis Of Prostaglandins
- •Fibrin Stabilizing Factor
- Growth Factor

Platelet Ultrastructure

Platelet functions

Resting platelet

activated platelet

GP IIb/IIIa receptors

Aggregating platelets

Platelet function

Adhesion

Aggregation

Activation

Secretion

Activated Platelets

Secrete:

- 1. $5HT \rightarrow vasoconstriction$
- 2. Platelet phospholipid (PF3) → clot formation
- 3. Thromboxane A2 (TXA2) is a prostaglandin formed from arachidonic acid

Function:

- * vasoconstriction
- Platelet aggregation
 (TXA2 inhibited by aspirin)
- 4. ADP causes stickiness and enhances aggregation

MECHANISM OF CLOTTING

1.Formation of
Prothrombin
activator complex
(by Extrinsic and
Intrinsic Pathways)

prothrombin into thrombin by PAComplex
3. Conversion of fibrinogen into

fibrin

2. Conversion of

2-CONVERISON OF PRTHROMBIN TO THROMBIN

By Prothrombin Activator Complex

* Prothrombin

- **❖ Plasma protein (Alpha₂ globulin)**
- **♦ Mol. Wt. 68,700**
- Plasma conc. 15 mg/dl
- * Unstable protein
- Synthesized by liver
- Vitamin-K is required for synthesis

3-CONVERSION OF FIBRINGEN TO FIBRIN Formation Of Clot

* Fibrinogen

- * Mol. Wt. 340,000
- ♦ Plasma conc. 100 700 mg/dl
- Synthesized in liver

ACTION OF THROMBIN ON FIBRONOGEN TO FORM FIBRIN

BLOOD CLOT

A meshwork of fibrin fibres running in all directions entrapping blood cells, platelets and plasma

TABLE 31–5 System for naming blood-clotting factors.

Factora	Names
1	Fibrinogen
II	Prothrombin
III	Thromboplastin
IV	Calcium
V	Proaccelerin, labile factor, accelerator globulin
VII	Proconvertin, SPCA, stable factor
VIII	Antihemophilic factor (AHF), antihemophilic factor A, antihemophilic globulin (AHG)
IX	Plasma thromboplastic component (PTC), Christmas factor, antihemophilic factor B
X	Stuart–Prower factor
XI	Plasma thromboplastin antecedent (PTA), antihemophilic factor C
XII	Hageman factor, glass factor
XIII	Fibrin-stabilizing factor, Laki–Lorand factor
HMW-K	High-molecular-weight kininogen, Fitzgerald factor
Pre-Ka	Prekallikrein, Fletcher factor
Ka	Kallikrein
PL	Platelet phospholipid

^aFactor VI is not a separate entity and has been dropped.

EXTRINSIC MECHNANISM FOR INITIATING CLOTTING

TF or tissue thromboplastin; includes phospholipids from the membranes of the tissue plus a lipoprotein complex that functions mainly as a proteolytic enzyme.

INTRINSIC MECHNANISM FOR INITIATING CLOTTING

Trauma to the blood itself or exposure of the blood to collagen (from a traumatized blood vessel wall), foreign surface/glass

ROLES OF THROMBIN IN HEMOSTASIS

CLOT RETRACTION

- * When clot contracts, it expresses most of the fluid from the clot within 20-60 min called → Serum
- * Serum cannot clot
- * Role of platelets in clot formation & retraction
- * Vicious circle of clot formation

ROLE OF CALCIUM IONS IN CLOTTING

♦ No Ca⁺⁺ → No Clotting

Blood samples are prevented from clotting by:

- **♦ Citrate ions** → **Deionization of Ca⁺⁺**
- **♦ Oxalate ions** → Precipitate the Ca⁺⁺
- ♦ Heparin \rightarrow combines with antithrombin effectiveness increases by 100-1000 fold, Also remove Factors XII, XI, X, and IX
- *** Warfarin:** ↓ production of Factors VII, IX and X by liver.
- **♦ EDTA** → "sequester" metal ions such as Ca²⁺

LYSIS OF BLOOD CLOTS BY PLASMIN

Formed blood clot can either become fibrous or dissolve.

•Fibrinolysis
(dissolving) =
Break down of
fibrin by naturally
occurring enzyme
plasmin therefore
prevent
intravascular
blocking.

NATURAL INTRAVASCULAR ANTICOAGULANTS

1. Endothelial Surface Factors

- Smoothness of Endothelium
- Glycocalyx Layers
- * Thrombomodulin Protein binds to thrombin → Activates
 Protein C (with ProtS) → inactivates factors V & VIII and
 inactivates an inhibitor of tPA → increasing the formation of
 plasmin.

2. Antithrombin III

- * 85-90 % Thrombin binds with Fibrin
- * 10-15 % Thrombin binds with Antithrombin III
- 3. Protein C (inhibits Va & VIIIa) & Protein S (Cofactor)

Antithrombin III is a circulating protease blocking clot factors

NATURAL INTRAVASCULAR ANTICOAGULANTS

3. Heparin

- vely charged conjugated polysaccharide
 - Increase the effectiveness of Antithrombin III (100-1000 fold)
 - Produced by
 - Mast cells
 - * Basophil cells
- * Most widely used anticoagulant clinically e.g. in stroke

4. Alpha₂ – Macrogobulin

Acts as a binding agent for several coagulation factors

Inactivation of coagulation by antithrombin III

<u>MSynthesis:</u> hepatocytes & endothelial cells.

Action:ATIII + thrombin→ thrombin-ATIIIcomplex.

•

PT of Patient/PT of Normal

Protein C:

- Vitamin K-dependent.
- Synthesized by the hepatocytes

Protein C
(inhibits Va & VIIIa)
& Protein S (Cofactor)

Activated protein C resistance (APC-R):

is mainly due to a genetic abnormality of clotting factor V called (factor V Leiden mutation).

point mutation in the factor V gene, G1691A in exon 10, leading to Arg506Gln.

MI

DVT & PE

Placental infraction

Stroke

Laboratory tests of hypercoagulability

Natural anticoagulants

IIITA

Protein C

Protein S

Fibrinolysis

PAI-1

FDPs (D-Dimer)

Laboratory tests of hypercoagulability cont Coagulation activation markers

Thrombin-Antithrombin complexes (TAT)

Prothrombin fraction 1+2

D-Dimer

Activated protein C Resistance (APCR)

Functional Assay

Genetic assay (Factor V Leiden)

Genotyping:

Factor V Leiden

Prothrombin G20210A

Hyperhomocysteinaemia (MTHFR)

BLEEDING & CLOTTING DISORDERS

- A. Liver diseases & Vitamin-K deficiency
- B. Hemophilia
- c. Thrombocytopenia

BLEEDING DISORDERS

- A. Liver diseases & Vitamin-K deficiency
- e.g. Hepatitis, Cirrhosis
 - Decreased formation of clotting factors
 - **❖** Icnreased clotting time
- Vitamin K dependent factors
 - Prothrombin, Factor VII, IX, X

BLEEDING DISORDERS

- A. Vitamin-K
- * Fat soluble vitamin
- Required by liver for formation 4 clotting factors
- Sources
 - * Diet
 - Sythesized in the intestinal tract by bacteria
- Deficiency
 - * Malabsorption syndromes
 - Biliary obstruction
 - Broad spectrum antibiotics
 - Dietary def (in Neonates)
 - **Rx.:** Treat the underlying cause Vit K injections

THROMBOCYTOPENIA

- Platelet count upto 50,000 ul
- * Less than 10,000 ---- Fatal
- * ETIOLOGY
- * Decreased production
 - * Aplastic anemia
 - * Leukemia
 - * Drugs
 - * Infections (HIV, Measles)

THROMBOCYTOPENIA (cont.)

- Increased destruction
 - * ITP
 - * Drugs
 - * Infections
- Clinical Features
 - Easy brusability
 - * Epistaxis
 - Gum bleeding
 - * Hemorrhage after minor trauma
 - * Petechiae/Ecchumosis

THROMBOCYTOPENIA (cont.)

- Diagnosis
 - *PLT decreased
 - *B.T increased
- * Rx
 - * Rx of the underlying cause
 - *** PLT concentrates**
 - Fresh whole blood transfusion
 - * Splenectomy

INHERITED COAGULATION DISORDERS

HEMOPHILIA

* HEMOPHILIA A

- Classic Hemophilia
- *85 % cases
- ❖ Def. Of factor VIII

* HEMOPHILIA B

- * 15 % cases
- ❖ Def. Of factor IX

- Transmitted by female X chromosome as recessive trait
- Occurs in males & Females are carriers

Laboratory diagnosis:

The following tests are abnormal: PTT

Factor VIII or IX or both. BT & PT are normal.

HEMOPHILIA

***** Clinical Features

- * Easy bruising, massive bleeding after trauma or operation, hemorrhages in joints
- Factor VIII
 - \star Small Comp. \rightarrow Hemophilia A
 - **♦ Large Comp.** → Von-Willebrand's disease
- * Rx
 - **❖ Injection of factor VIII (Hemophilia A)**
 - *Injection of factor IX (Hemophilia B)

ACQUIRED COAGULATION DISORDERS Disseminated Intravscular Coagulation

- Wide spread activation of coagulation with formation of microthrombi in small blood vessels.
- Bleeding diathesis or tendency secondary to depletion of coagulation factors & platelets.

Laboratory diagnosis of DIC:

Low platelet count

Prolonged PT &PTT.

Low fibrinogen or falling fibrinogen on repeated testing.

Fragmented RBCs in blood smear.

Increased FDPs & D-dimer.

VITAMIN K DEFICIENCY

- ❖ Vit. k is required for gamma carboxylation of glutamic acid residues (that is important for calcium binding) of factors II,VII, IX, X, protein C & protein S.
- ❖ In absence of vit k. , gamma carboxylation fail to occur & non functional forms of vit k. dependant factors circulate in the blood.

Laboratory diagnosis:

Both PT&PTT are prolonged.

Platelet count & fibrinogen are normal with absent FDPs.

CHRONIC LIVER DISEASE

- Decreased clearance of activated clotting factors & increased level of fibrinogen /fibrin degradation products.
- Liver disease with portal hypertension & splenomegaly --- thrombocytopenia.
- Hepatoma & cirrhosis--- dysfibrinogenemia which is better to be diagnosed by thrombin time & functional fibrinogen assay.

LIVER DISEASE

- The Liver is the major site of clotting factor synthesis
- Hemorrhagic diathesis occur in acute hepatitis or cirrhosis.
- In these conditions, vitamin K- dependant factors II,VII, IX, X, protien C & S are reduced.
- Factors V,VIII are not synthesized by hepatic parenchymal cells but they are increased as acute phase reactants.
- * vWF synthesized by endothelial cells is increased as an acute phase reactant.

Injury to wall **Summary of** of blood vessel reactions involved in Contraction Tissue Collagen hemostasis. thromboplastin Activation of Platelet coagulation reactions Loose platelet Thrombin aggregation Definitive Temporary hemostatic hemostatic plug plug

Limiting reactions

FACTORS AFFECTING BLOOD PLATELET COUNT

- **♦** AGE : ↓ in newborn
- Menstrual cycle:
 - \star \downarrow prior to menstruation
 - **♦** ↑ After menstruation
- **♦** Pregnancy: ↓
- **♦ Injury:** ↑
- **⋄** Adrenaline: ↑
- **❖ Smoking:** ↓
- **♦ Nutritional deficiencies:** ↓ eg; vitamin b12, folic acid and iron

The fibrinolytic system and its regulation by Protein C

Coagulation Tests

The process of hemostasis occurs in three phases:

- 1. The vascular platelet phase, which assures primary hemostasis;
- 2. Activation of the coagulation cascade, which assures formation of the clot;
- 3. And activation of a series of control mechanisms, which stop propagation of the clot and limit activation of the coagulation cascade to the region of endothelial rupture.

Coagulation Tests

- 1. Tests of the Vascular Platelet Phase of Hemostasis:
- Bleeding Time (BT)
- 2. Tests of the Coagulation Cascade:
- Clotting Time (CT) or Coagulation time
- Activated Partial Thromboplastin Time (APTT).
- Prothrombin Time (PT).
- 3. Tests of Fibrinolysis and the Mechanisms That Control Hemostasis:
- Fibrin Degradation Products (FDP)

Hypercoagulability:

❖ Is a laboratory phenotype whereby activation of the of clotting, fibrinolysis, endothelial cells and platelets are identified.

Thrombus formation: Virchow's triad

Hypercougulability/Prothrombotic States

Hereditory Hemostatic disorders:

Factor V Leidin

Prothrombin G20210A

Hyperhomocysteinaema

Deficiencies of AT III, Proteins C & S

Increased FVIII

Acquired Hemostatic disorders:

Raised Levels of fibrinogen & FVII

Antiphosphlipid Antibodies (LA & ACAs)

Oestrogen therapy

Pregnancy and its complications

Surgery and prolonged immobility

Major Trauma

Malignancy

Nephrotic Syndrome

Hypercougulability/Prothrombotic States cont.

Acquired Hemostatic disorders: cont.

Dehydration, Hyperviscosity, Polycycaemia, Thrombocytosis

Sepsis

Smoking

Obesity

Age

Varicose veins

The "Classic" Coagulation System

The Effect of Antithrombin III

The Effect of Protein C

Extrinsic

The Effect of TFPI

THE "CLASSIC" COAGULATION SYSTEM

