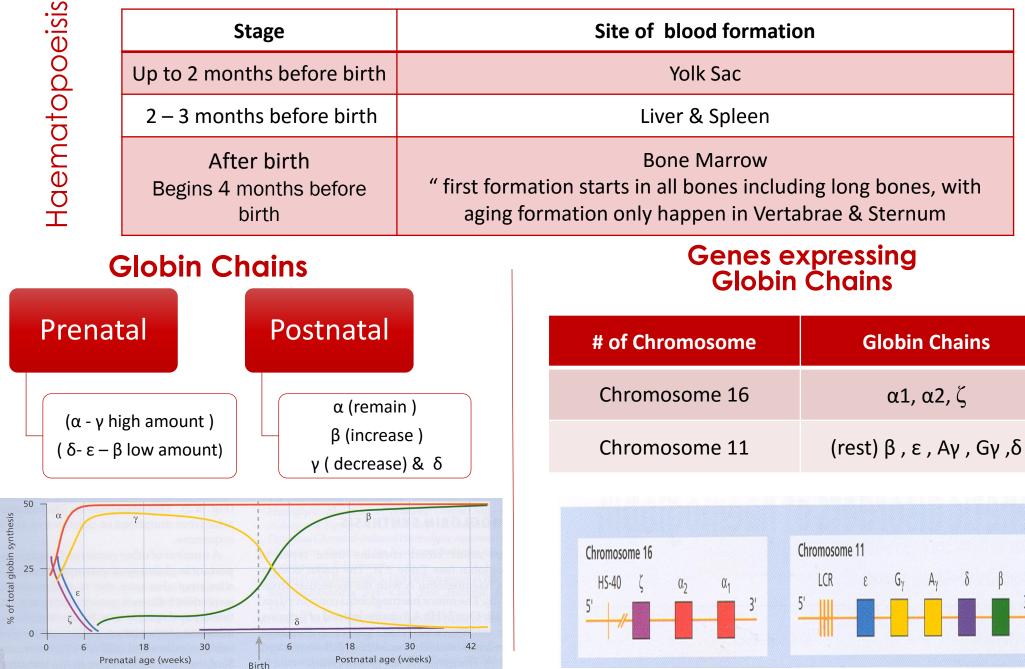


HAEMOGLOBINOPATHIES


NOTE : THIS TEAMWORK DON'T VIEW EVERYTHING IN THE SLIDES ONLY THE IMPORANT THINGS NOTED BY THE DOCTORS

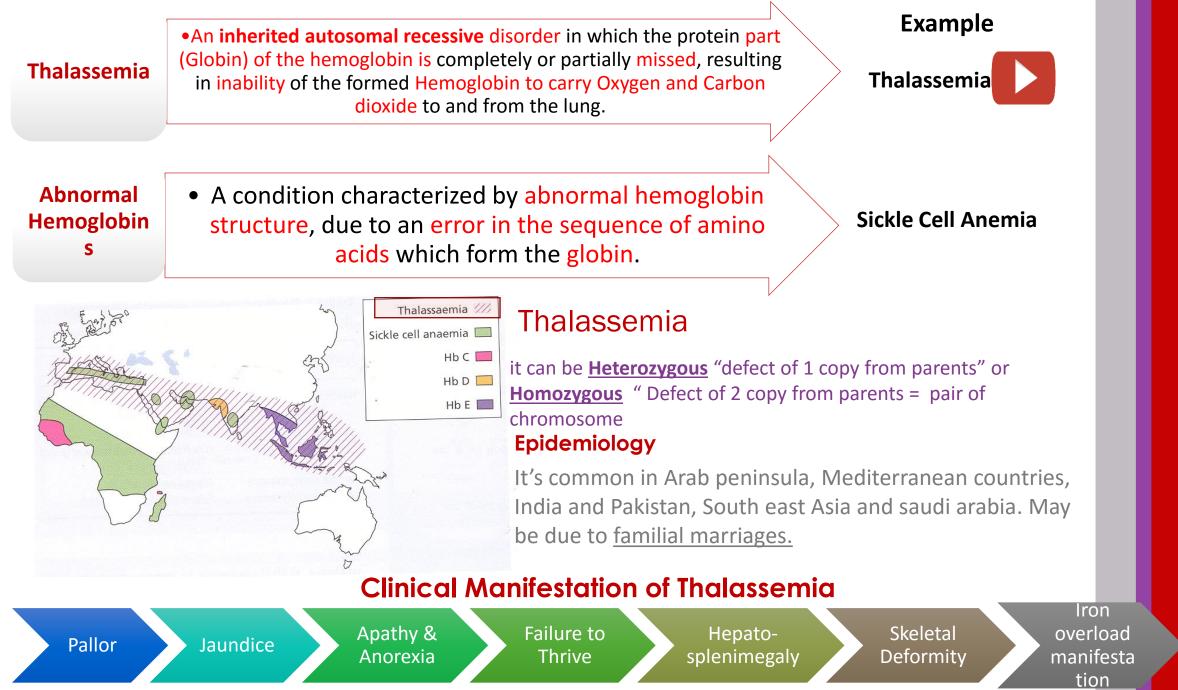
دعاء فبل المذاكرة : اللهم أني أسالك فهم النبين و حفظ الملرسلين و الملائكة المقربين اللهم اجعل السنتنا) (أنك على كل شيئا قدير و حسبنا الله نعم الوكيل ,عامرة بذكرك و قلوبنا بخشيتك

DON'T FORGET to check our editing file : haematology edit

Please don't hesitate to contact us on: <u>Haematology434@gmail.com</u>

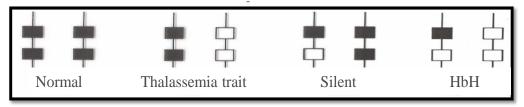
Normal Human Hemoglobin

Age Category	Type of Hemoglobin	Globin Chains	Percentage in Saudi
Embryonic	Hb Gower I	ζ ₂ Є ₂	
Up to 8 weeks	Hb Gower II	α ₂ € ₂	
gestations	Hb Portland	ζ ₂ γ ₂	
Fatal	HbF	$\alpha_2 \gamma_2$	
Fetal	HbA	$\alpha_2\beta_2$	
	HbA	$\alpha_2 \beta_2$	95%
Adult "most important"	HbA ₂	α2δ2	2.5 - 3.5 %
	HbF	$\alpha_2 \gamma_2$	0.5 - 1.5 %


α globin consists of 141 Amino acids e.g. (ζ), while β has 146 Amino acids e.g. (β, ε, Αγ, Gγ, δ)

Abnormal Human Hemoglobin Types

Name	Globin Chains
Hb H	4β
Hb Bart's found normally at birth but shouldn't exceed 0.5%	4γ
Hb Lepore	rare 2 (δβ) 2α (not important)


Hemoglobins present at birth in normal newborn

Hemoglobin	Percentage
HbA	15 – 40 %
HbA ₂	< 0.3 %
HbF	60 – 85 %
Hb Bart's	< 0.5

Туре	Description
Silent (carrier)	Missing one gene in one of the chromosome pairs (Heterozygous), usually no presenting symptoms.
Thalassemia trait "mild"	Missing two genes, either in the same chromosome (Asian type) - one on each chromosome (African type).
HbH (moderate)	genes are missed. Only one gene remains
Hydrops fetalis	All 4 genes are missed, the fetus cannot live without intervention.

•When a man whit silent alpha-Thalassemia get married with a trait Asian alpha- Thalassemia woman, Their children's probabilities can be show below:

alpha-Thalassemia

is a condition in which α globin is partially or completely absent due to missed genes, which are responsible to express it. Usually happens in relatives marriage

Lab Diagnoses of a-Thalassemia

High red cell count in the trait
Hypochromic microcytic red cells & target cells
Normal serum iron or low in children
Normal total iron binding capacity or high in children

 Positive Hb H inclusion bodies in the blood film preparation & positive Heinz bodies with vital stains

 Hemoglobin electrophoresis show presence of hemoglobin H (Hb H disease)

Hemoglobin electrophoresis show low Hb A2 levelGenetic study to confirm the diagnosis

A decrease in HbA2, indicates a benign form of α-Thalassemia.
While an increase in the percentage of HbA2 is an indicator of β-Thalassemia

Types of B-Thalassemia

Classification according Molecular Factors

1- Beta+: the synthesis of Beta globin is partially decreased.

2- BetaO: the synthesis of Beta globin is completely lost.

he gene expressing Beta in both types could be present (Ferrara) or partially decreased (Indian).

3-δβ-Thalassemia

4- Hereditary Prominent Fetal Hb (HPFH): HbF is the prominent type here (not HbA)

In the last 2 types, the gene is deleted and the synthesis is completely lost.

Classification according the Concentration of Hob

Туре	Hb Count
Major "most severe"	Less than 7g/dl
Intermedia	7-10 g/dl
Minor	More than 10g/dl
Minima	Normal

Molecular Defects in the β -Thalassemia Syndrome

1. β ⁺ -Thalassemia 2. β ⁰ -Thalassemia	<mark>β-Globin synthesis</mark> Decreased Absent	<mark>β⁻mRNA</mark> Decreased Absent	<mark>β-Globin Gene</mark> Present Present	<mark>δ-Globin Synthesis</mark> Present Present	γ-Globin Synthesis Present Present
Ferrara Variant	Absent	Inactive	Present	Present	Present
Indian Variant	Absent	Absent	Partially Deleted	Present	Present
3. δβ-Thalassemia	Absent	Absent	Deleted	Absent	Increased
4. HPFH	Absent	Absent	Deleted	Absent	increased

β-Thalassemia con..

Hemoglobin Fractions in the Genotypic Variants of the β-Thalassemia Syndromes:

Genotypes of β-Thalassemia: 1. β-thalassemia major: (very severe)

2. β -thalassemia intermediate: inherited two β + alleles (moderate to severe)

3. β-thalassemia minor: inherited one abnormal allele (trait, asymptomatic or mildly symptomatic)

4. β-thalassemia minima :

(Silent like α thalassemia trait, not causing problem unless the carrier married to the same inherited abnormality)

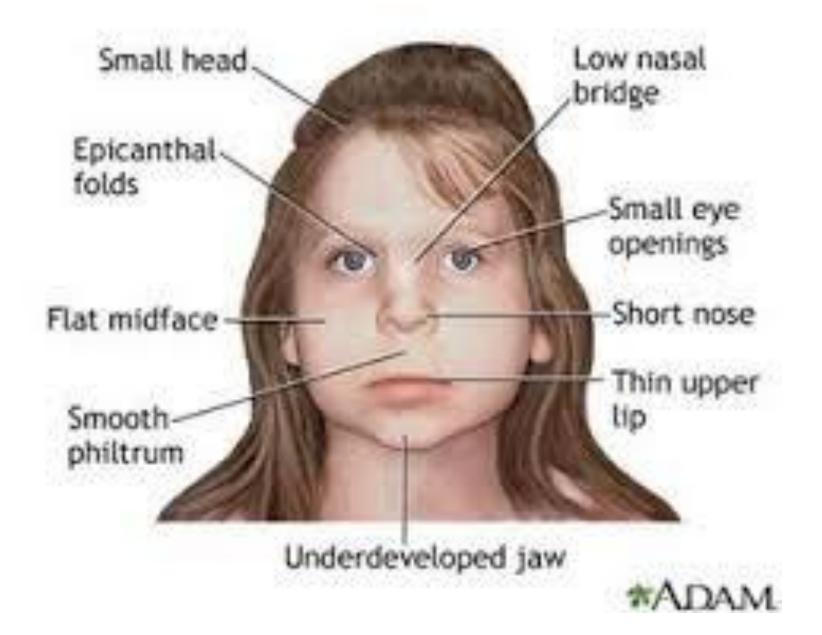
Genotype	HbA	HbA ₂	HbF (%)	Other Hemoglobins
Normal β/β	97	2.5 - 3.2	<1	None
Thalassemia major βº/βº βº/β+	0	1.0 - 5.9	>94	Free α-chains
Thalassemia intermedia β+/β+, black	Present	5.4 - 10.0	30 - 73	None
Thalassaemia minor $\beta + \beta - \beta^0 - (\delta \beta)^0 - (\delta \beta)^0 - (\delta \beta) Lepore - (\gamma \delta \beta)^0 - (\gamma \delta \beta)^0 - \beta$	>90	2.5 - 8.0	1-2	None
Thalassemia minima β ^{silent} /β	97	<3.2	<1	None

Clinical Manifestations in Thalassaemias

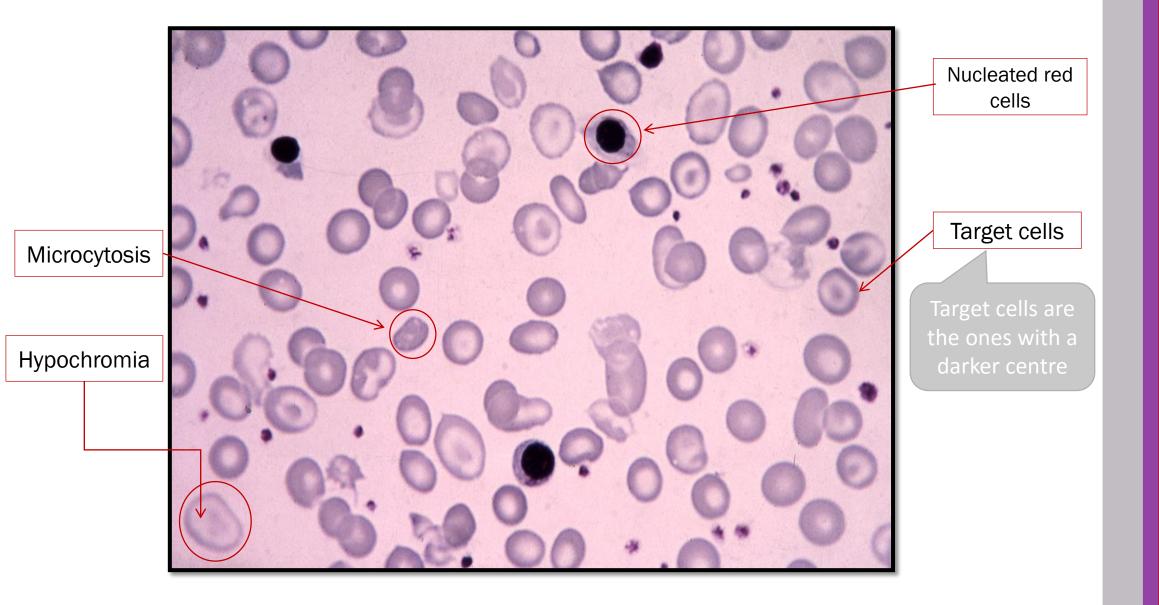
- Pallor
- Jaundice
- Apathy and Anorexia
- Failure to Thrive (failure in growth)
- Hepato-splenomegaly
- Skeletal Deformity
- Iron Overload mainfestations

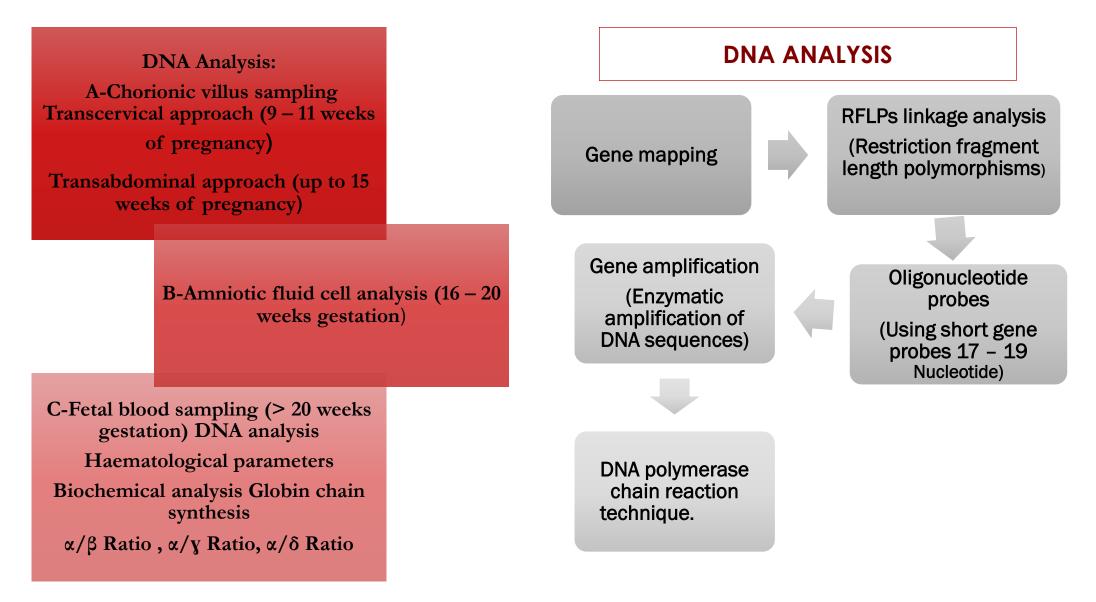
Thalassemic face in β-thalassemia major
They have the same facial characteristics:
1- Forehead bossing (protrusion)
2- Prominent maxilla
3- Widen space between eyes
Because of increasing the demand on bone
marrow, facial

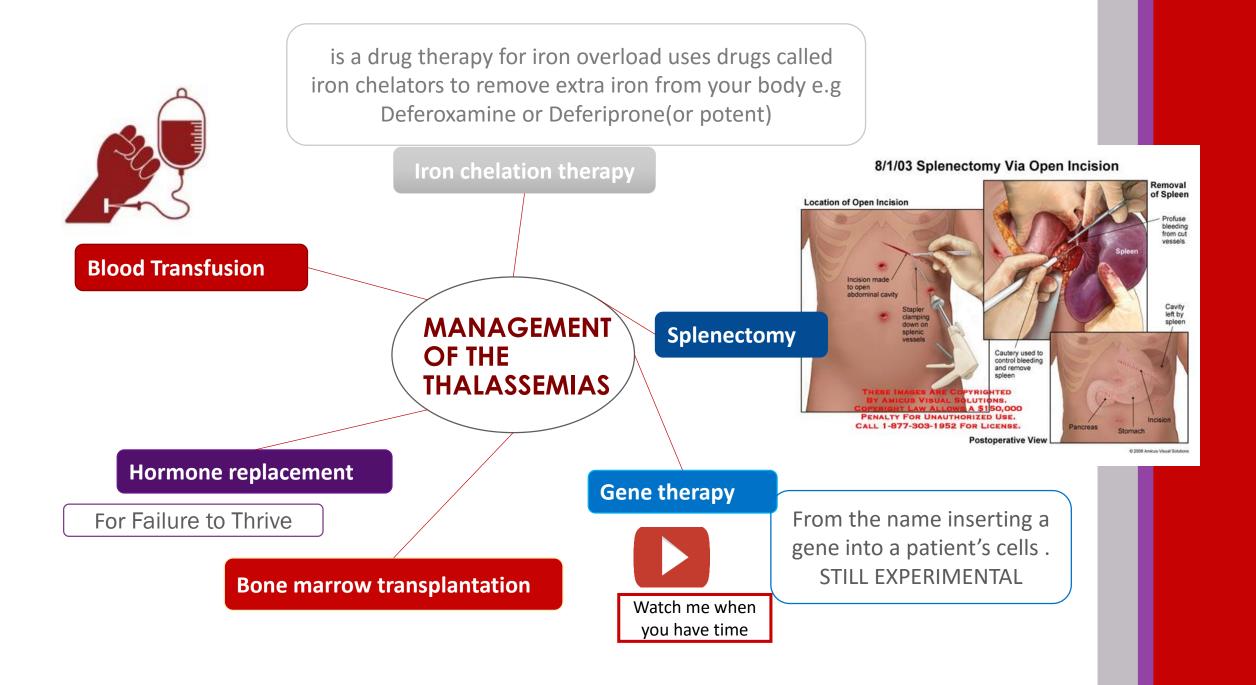
bones become expanded



Hair-on-ends appearance in x-ray


Thalassemia Face


Clinical and Hematological Features of the **B**-Thalassemia Syndrome


This table is not important to memorized just things noted

	Major	Intermedia	Minor	Minima
Severity of mainfestations	++++	++	+, ±	±, 0
Genetics	Homozygotes, double heterozygotes	Homozygotes, double heterozygotes, rarely heterozygotes	Heterozygotes	Heterozygotes
Splenomegaly	++++	++,+++	+,0	0
Jaundice	+++	++,+	0	0
Skeletal changes	++++,++	+,0	+,0	0
Anemia (Hb, g/dl)	<7	7 – 10	>10	Normal
Hypochromia	++++	+++	++	+
Microcytosis	+++	++	+	0
Target cells	10-35%	++	+	±
Basophilic stippling	++	+	+	0,+
Reticulocytes (%)	5-15	3-10	2-5	1-2
Nucleated red cells	+++	+,0	0	0
±, little or no abnormality; +, mild abnormality; ++++, prominent abnormality				

Prenatal diagnosis of the haemoglobinopathies – (Including thalassaemia)

Assessment of Iron Stores

Serum ferritin

Serum iron and percentage saturation of transferrin (iron-binding capacity*)

Liver CT scan or MRI

Bone marrow biopsy (Perl's stain) for reticuloendothelial stores

Diagnosis of Haemoglobinopathies including Thalassaemias Personal & Family History Physical Examination Laboratory Investigation Haematological Tests – CBC Quantitation of HbA2 and HbF Sickle cell test

*Note that in thalassemia it'll be low while in IDA it'll be high

Assessment of tissue damage caused by iron overload

Cardiac X-ray - ECG

Liver	Liver function tests -liver biopsy -CT scan
Endocrine	Clinical examination (growth and sexual development) - glucose tolerance test – thyroid and parathyroid

1- The hematopoiesis in the embryo start at the:

- A. A. Liver B. Spleen
- C. Yolk sac D. bone marrow
- 2- Most of the hematopoiesis in ADULTs is in:
- A. Vertebrae
- B. Tibia
- C. Ribs
- D. Sternum

3- -In Embryo we see what type of HB:

- A. Hb A
- B. Hb F
- C. Hb A2
- D. Hb Portland

4- -In Adults the prominent type of Hb is:

- A. Hb F
- B. Hb Portland
- C. Hb A_2
- D. Hb A

5- How many amino acids found in Alpha chine?

0 11	
Α.	141
В.	146
C.	148
D.	114
6- No	ormal percentage of Hb F in Adults is:
А.	A. 91-97%
В.	B. 0.5-1.5%
C.	C. 11-15%
D.	D. 20-30%
7- In Hb H	Alpha Thalassemia how many deleted copies are in ?
А.	one copy
В.	two copies
C.	Three copies
D.	four copies
	Ve preformed a HbA ₂ Test for Thalassemia <u>patient</u> and as <u>elevated</u> , what type of thalassemia he is probable ng?
А.	Alpha

Β.

Beta

Q1 How can we manage thalassemia ?

Blood Transfusion - iron chelation therapy – Splenectomy Hormone replacement - Bone marrow transplantation - Gene therapy

Q2 Under microscope what do we see in thalamic patient? Microcytic – Hypochromic cells -Nucleated red cells - Target cells

Q3 What Hb types are found in adult ? Hb A (95-97%) – Hb A₂ (2.5-3.5%) – Hb F (0.5-1.5%)

Thank you for checking our work

Now you can check a lecture out :D

DONE BY: Nouf Alharbi Amal Afrah

Ghaida Almasaad

Reviewed by: Hadeel B.Alsulami Abdullah M. Albasha

:دعاء بعد المذاكرة فرده لي عند حاجتي ,اللهم اني أستودعتك ما قرأت وما حفظت وما تعلمت) (وحسبنا الله ونعم الوكيل ,اليه أنك على كل شيء قدير