ECS				
Organs	-Pituitary thyroid parathyroid adrenal pineal thymus			
	-(endo&exo): panc gonads			
	-(neural&endo): hypothalamus			
	-(other hormones producers):			
	fat cells SI walls stomach Kidneys heart			
Types	-endocrine: released by glands to affect target cells(TC)			
	-paracrine: released into ECF(interstitial) to affect variety of TC			
	-autocrine: the same secretor is the TC			
	-NT: usually have a local effect			
	-neuroendocrine: released into circulation to affect TC			
-cytokines: Pr released into ECF to fun as (auto, para, en				
	(e.g.: interleukin, lymphokine, adipokine)			
	(auto & para are not really hormones, cuz hormones must have a			
	distant effect not local)			

Hormones				
transport	-hydroph	nilic: dissolve in plasma (Pr & CAT)		
	-lipophili	c: bound to plasma Pr - inc hl & work as reservoir		
		(steroids & thyroid hormones)		
Types	Pr	-parathyroid, PG, panc(insulin & glucagon)		
		-stored until needed		
		-synthesized as prehormones then posttranslation into		
		prohormones, then into hormones		
	steroids	-adrenal cortex(cortisol & aldosterone)		
		ovaries & placenta (progesterone & estrogen)		
		testes(testosterone)		
	AA	(only aminoacids, not full Pr peptide chains)		
		- thyroid (thyroxin & triiodothyronine)		
		Adrenal medulla(E & NE)		
MOA	Hormone	e binds to receptor - enz activation - release of 2ndM -		
	effect			
Effect on	-ion char	nnels -G Pr receptor -enzymatic receptors		
	-IC recep	tors (genetic activation - thyroids & steroids)		
	(recepto	rs are highly specific to one hormone)		
Receptors	-surface (Pr, CAT)			
site	-cytoplas	sm (steroids)		
	-N (thyro	oid)		

MOA of	(cAMP)
2ndM	Hormone binds to receptor, then whole binds to G Pr - G Pr
	displaces GDP for GTP to get activated - active G Pr activates
	adenylate cyclase enz(ACE) - active ACE transforms ATP into
	cAMP - cAMP activates Pr kinase to cause cellular effect
	(mem phospholipid)
	Hormone binds to receptor - activation of G Pr - active G Pr binds
	and activates phospholipase enz(PLE) - PLE splits phospholipid
	PIP into DAG & IP3, both act as 2ndM - DAG activates Pr kinase while IP3 triggers the release of stored Ca - Ca(3rdM) causes
	effect
	(tyrosin kinase)
	-surface receptor
	-used by insulin & GH
	-formed of 2 unites that bind to form a dimer once insulin binds
	-active TK phosphorylates signaling subs thus inducing growth
Steroids &	diffuse into ICF - activates IC receptor - ReceptorHormonComplex
thyroids	travel to N to bind to DNA receptor - produces mRNA - produces
	Pr that causes cellular effect
Target cells	-activation depends on:
	Blood level of hormone
	# of receptors
	The affinity of receptors to hormones
	-Up/Down regulation is the inc or dec of # of receptors due to
Consin	specific conditions related to the hormone
Conc in circulation	-forms of hormones in blood: free or bound
Circulation	-indicates: release rate, and degradation rate -measurement:
	RIA(RadioImunoAssay)
	ELISA(Enz-Linked ImmunoSorbent Assay)
Removal	-degradation enzs -kidnyes -liver
from	(free hormones are easier to clear than Pr-bound ones)
circulation	

Types of	-permissiveness: the need of 2+ hormones to cause an effect
interactions	(thyroids-GH, def. in infants causes dwarfism)
	-synergism: the effect of 2+ hormones together is much greater
	than each alone summed up
	(blood glucose levels with glucagon, cortisol & E)
	-antagonism: hormones oppose the action of one another
	(glucagon antagonizes insulin, calcitonin antagonize parathyroid)
Regulation	-by positive & negative feedback mechanism
	-hormones are synthesized/released in response to: humoral,
	neural or hormonal stimuli
Regulation	-negative feedback: Most common
MOA	(LH from PG stimulates testosterone release, which will inh LH
	further secretion)
	-positive feedback: rare
	(LH stimulates estrogen release, which will greatly stimulates
	further LH release)