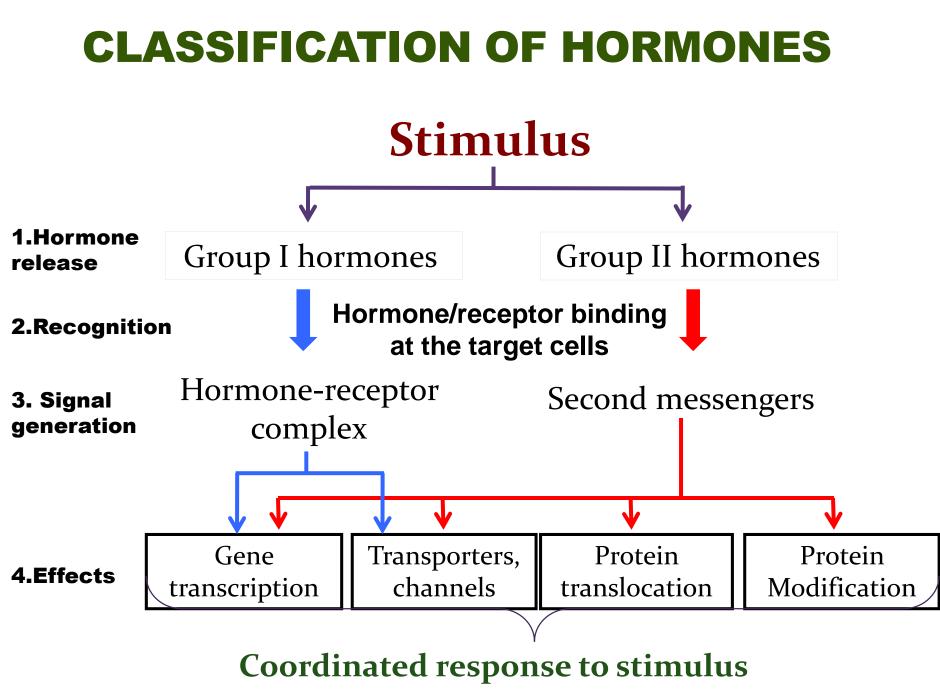

GENERAL MECHANISMS OF THE ACTIONS OF HORMONE

OBJECTIVES:

- Acquire the knowledge for general consequence of hormone-receptor interaction.
- Understand different mechanisms of action of hormones.
- Recognize the biomedical importance due to disturbance in the normal mechanisms of hormonal action.

MIND MAP



Background

- Multicellular organisms depend in their survival on their adaptation to a constantly changing environment
- Intercellular communication is necessary for this adaptation to take place
- Human body synthesizes many hormones. Hormones can exert many different effects in one cell or in different cells
- A target is any cell in which the hormone (ligand) binds to its receptor

FACTORS DETERMINING THE RESPONSE OF A TARGET CELL TO A HORMONE

- The rate of synthesis & secretion of the hormones
- The <u>conversion</u> of <u>inactive</u> forms of the hormone <u>into</u> the fully <u>active</u> form
- The rate of hormone clearance from plasma (half-life & excretion)
- The <u>number</u>, relative <u>activity</u>, and <u>state of occupancy of</u> the specific <u>receptors</u>
- <u>Post-receptor</u> factors

GENERAL FEATURES OF HORMONE CLASSES:

	Group I	Group II	
Types	 Steroids Thyroid Hs (T₃ & T₄) Calcitriol Retinoid 	PolypeptidesGlycoproteinsCatecholamine	
Solubility	Lipophilic*	Hydrophilic	
Transport proteins	Yes*	No	
Plasma half-life	Long* (Hours-Days)	Short (Minutes)	
Receptor	Intracellular*	Plasma membrane	
Mediator	 Receptor-hormone complex 	 cAMP, cGMP,Ca Metabolites of complex phosphpinositols Tyrosine kinase cascades 	

*Lipophilic hormones need proteins to bind to in the Hydrophilic environment of plasma>>this will decrease their clearance>>increase their half life + since they're Lipophilic>> they can cross the cell membrane>>their Receptors will be waiting for them inside.

CLASSIFICATION OF HORMONES BY MECHANISM OF ACTION

A) Hormones that bind to intracellular receptors(Steroid-Thyroid superfamily)

B) Hormones that bind to cell surface receptors* 1) The 2nd messenger is cAMP

2) The 2nd messenger is cGMP

3) The 2nd messenger is calcium or phosphatidylinositol or both

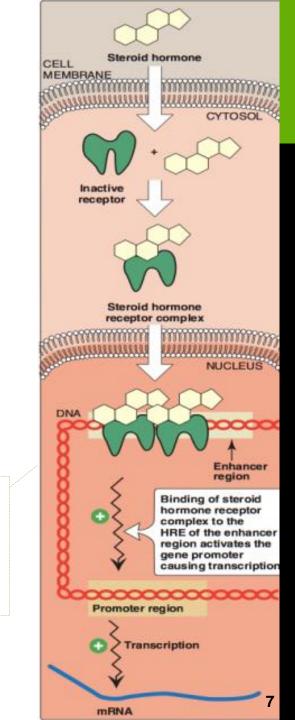
4) The 2nd messenger is a tyrosine kinase cascade

*Hydrophilic hormones are unable to pass through the phospholipid bilayer of the plasma membrane and are therefore dependent upon receptor molecules on the surface of cells 'need of 2nd messenger'.

A) MECHANISM OF ACTION OF: STEROID -THYROID HORMONES

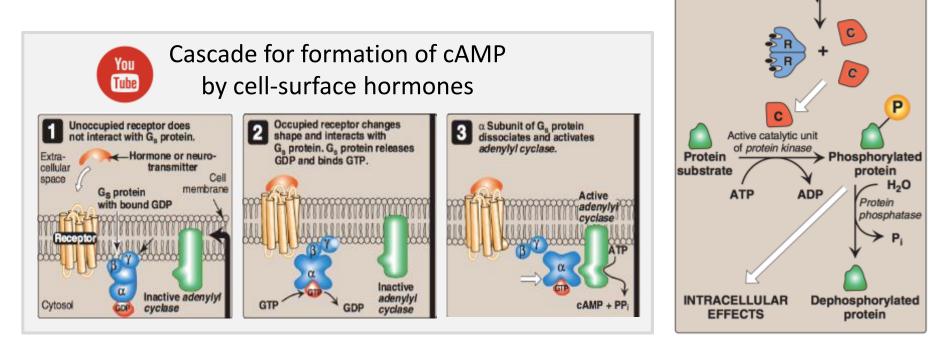
Steroid Hormones:

- Glucocorticoids
- Mineralocorticoids
- Sex hormones:
 - Male sex hormones : Androgens
 - Females sex hormones: Estrogens & Progestin


Thyroid Hormones $(T_3 \& T_4)$

Calcitriol (1,25 [OH]₂ –D3) (Active form of vitamin D)

Retinoic acid


A Lipophilic Hormone will enter the cell>>bind to its receptor which is either in the *cytosol* "steroid hormones" or in the *nucleus* "thyroid hormones" to form <u>hormone-receptor complex</u>>> hormone-receptor complex will bind to HRE* of the enhancer region>>gene transcription

*HRE: A <u>hormone response element</u> (HRE) is a short sequence of DNA within the promoter of a gene that is able to bind a specific <u>hormone-receptor complex</u> and therefore regulate transcription.

1) The second messenger is cAMP

- Catecholamines (α2- Adrenergic)
- Catecholamines (β- Adrenergic)
- Ant.Pituitary: ACTH, FSH, LH & TSH
- ADH (Renal V₂ –receptor)
- Calcitonin & PTH
- Glucagon

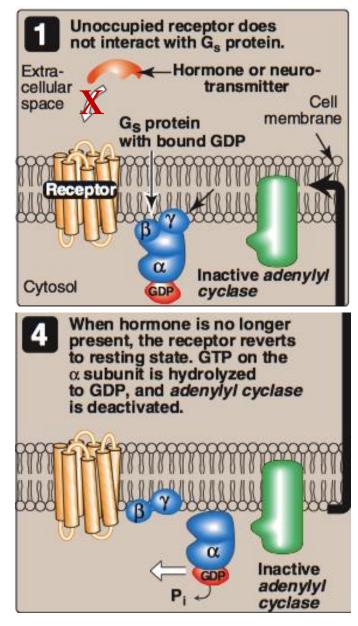
Actions of cAMP

cAMP-dependent protein kinase A

CAMP

Catalytic

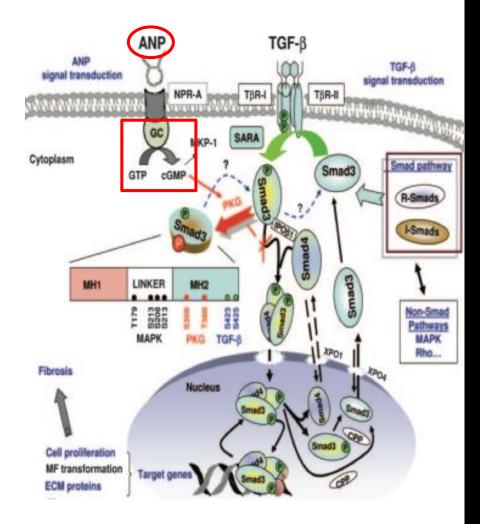
subunits


Regulatory

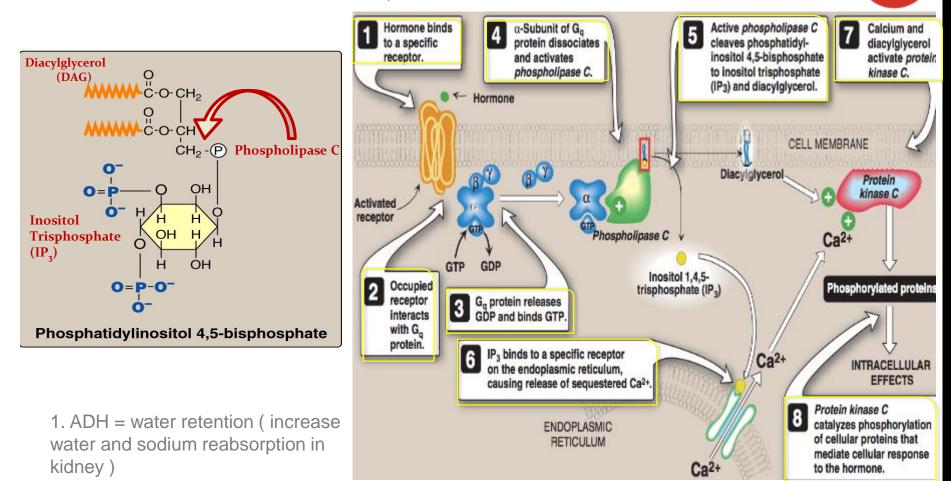
subunits

Adenyly cvclase

Abortion of Hormonal Stimulus:


- 1. Release of hormone from its receptor (unbound receptor)
- 2. Dephosphorylation of protein substrate by phosphatase
- 3. Degradation of <u>cAMP</u> into <u>AMP</u> by phosphodiesterase
- 4. Inactivation of protein kinase A by a decrease of cAMP
- 5. Hydrolysis of GTP into GDP
- 6. Binding of α-subunit to $\beta\gamma$ -subunits
- 7. Inactivation of adenylyl cyclase

2) The second messenger is cGMP


- Atrial Natriuretic Peptide (ANP)
- Nitric Oxide

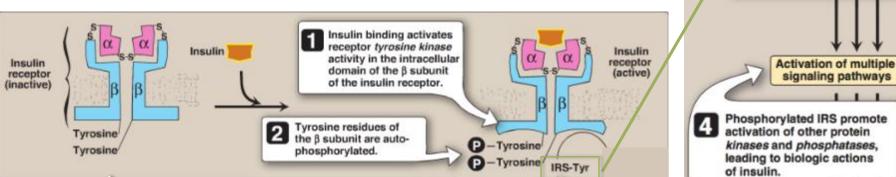
- Guanaylate cyclase (GC) converts GTP to <u>cGMP</u> (2nd messenger)
- ANP = Powerful vasodilator It is involved in:<u>homeostatic control</u> <u>of body water, sodium,</u> <u>potassium.</u>

3) The 2nd messenger is calcium or phosphatidylinositol or both

- Acetylcholine (muscarinic)
- Catecholamines (α1- Adrenergic)
- Angiotensin II
- ADH¹ (vasopressin): Extra-renal V₁ receptor

You

Tube


Receptor tyrosine kinase

phosphorylates other proteins, for example, insulin receptor substrates (IRS).

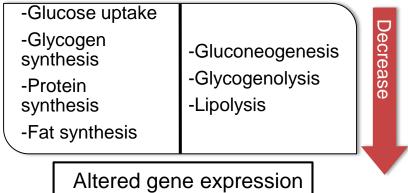
4)The second messenger is a tyrosine kinase cascade

- GH & Prolactin
- Insulin
- Erythropoietin

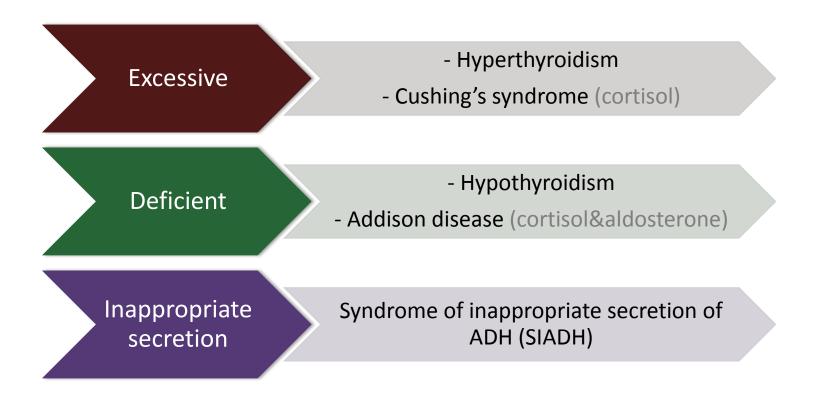
MECHANISM OF INSULIN ACTION:

ncrease

EXTRA:


-Alpha subunit: responsible for recognizing and binding to insulin. binding of insulin to the α subunits of the insulin receptor

induces conformational changes that are transmitted to the $\boldsymbol{\beta}$ subunits.


Beta subunit: contains a hydrophobic domain which spans the plasma membrane + intracellular domain (contains the tyrosine residue that will be phosphorylated after binding to the insulin)

✓ So the Receptor its self is phosphorylated (autophosphorylation). This Autophosphorylation initiates a cascade of cell-signaling responses, including phosphorylation of a family of proteins called <u>insulin receptor substrates</u> (IRSs).

Biologic Effects of Insulin

BIOMEDICAL IMPORTANCE OF HORMONES

Pharmacological treatment of these diseases depends on:

- replacement of deficient hormone (hypo-)
- use of drugs that interfere with the mechanism of action of the hormones (hyper- or inappropriate)

SUMMARY

	Group 1	Group 2				
Receptor	Intracellular	Bind to the surface				
2 nd messeng er	Receptor intracellular	cAMB	cGMP	Ca + & phosphatidylino sitol	Tyrosine kinase	
Examples	 Steroids (sex hormones) Thyroid hormones T3, T4 Calcitriol Retinoic acid 	 1. Catecholamines (α₂- Adrenergic) 2. Catecholamines (β- Adrenergic) 3. Ant. Pituitary: ACTH, FSH, LH & TSH 4. ADH (Renal V2- receptor) 5. Calcitonin & PTH 6. Glucagon 	 Atrial natriuretic peptide (ANP) Nitric oxide 	 Acetylcholine (muscarinic) Catecholamines (α₁- Adrenergic) Angiotensin II ADH (vasopressin): Extra-renal V1 receptor 	 GH & Prolactin Insulin Erythropoietin 	

MCQS

1. The action of inositol triphosphate (IP3) is?

- A. to activate protein kinase C
- B. to activate adenylyl cyclase
- C. to release Calcium from endoplasmic retiulum
- D. to activate protein kinase A
- 1. When ADH binds to its extra renal V1 receptor , its second messenger will be?
- A. CA/phosphatidylininositol (Ca/PIP)
- B. cAMP
- C. cGMP
- D. Tyrosine kinase
- 2. Which one of the following hormones uses tyrosine kinase cascade as a second messenger?

A.Prolactin B.ADH

C.Acetylcholine

3. Which one of the following is a biological effect of insulin?

- A. Increase gluconeogenesis
- B. Decrease lypolysis
- C. Increase glycogenolysis
- D. Decrease glucose uptake
- 4. In CA/phosphatidylininositol system , the function of diacylglycerol is?
- A. To activate protein kinase A
- B. To activate protein kinase C
- C. To activate protein kinase G
- D. To release calcium from endoplasmic reticulum

6. Which one of the following is hydrophilic :

- A. Glucocorticoids
- B. Progestin
- C. Epinephrine
- D. Retinoic acid

7. In cGMP pathway , protein kinase G activated by :

- A. Adenylyl cyclase
- B. Phospholipase
- C. Protein kinase A
- D. Guanaylate cyclase
- 8. Which one of the following has the longest plasma half life :
 - A. Thyroxin
 - B. Epinephrine
 - C. ADH
 - D. PTH
- 9. The second messenger for atrial natriuretic peptide is
 - . A. cAMP
 - B. cGMP
 - C. Tyrosine kinase
 - D. Ca

10. Which one of the following hormones does NOT need second messenger to do its action :

A. FSH B. Estrogen C. LH D. Insulin

1-C 2-A 3-A 4-B 5- B 6-C 7-D 8-A 9-B 10- B

SAQS

What's factors determine the response of target cell to a hormone?

- 1. The rate of synthesis & secretion of the hormones
- 2. The conversion of inactive forms of the hormone into the fully active form
- 3. The rate of hormone clearance from plasma (half-life & excretion)
- 4. The number, relative activity, and state of occupancy of the specific receptors
- 5. Post-receptor factors

What are the mechanism of action of a hormone to produce an effect?

1. group 1 hormones : gene transcription , transporters channels

2. group 2 hormones : gene transcription , transporters, channels , protein translocation , protein modification

How to stop hormonal stimulus of cAMP :

- 1. Release of hormone from its receptor (unbound receptor)
- 2. Dephosphorylation of protein substrate by phosphatase
- 3. Degradation of cAMP into AMP by phosphodiesterase
- 4. Inactivation of protein kinase A by a decrease of cAMP
- 5. Hydrolysis of GTP into GDP
- 6. Binding of α -subunit to $\beta\gamma$ -subunits
- 7. Inactivation of adenylyl cyclase

لالهم إذي لاستوديكي ما قرائر وما مفظر وما تعلمت فروه ل بحدر حاجتي لأنك بحلي كل شيء قرير

DONE BY:

Mada AlBatli Aya AlDayel **REVISED BY:**

Ameera Zuair

Najla Aldraiweesh

For questions and comments. contact us **Biochemistry434@gmail.com**