

Important
 Further explanation

•	Mind map	3
•	Introduction	4
•	Steroid Hormone Transport	6
•	Cortisol	7
•	Cushing Syndrome	14

Please check out this link before viewing the file to know if there are any additions/changes or corrections. The same link will be used for all of our work <u>Physiology Edit</u>

Adrenal Gland

Small ,triangular glands loosely attached to the kidneys.

Divided into two morphologically and distinct regions:

- ➤ Adrenal <u>Cortex.</u>
- ➤ Adrenal <u>Medulla</u>.

Hormone Of adrenal gland :

Cortex: (Secretes steroid hormones)

- Mineralocorticoids(aldosterone) → from zona glomerulosa
- Glucocorticoids → from zona fasciculata
- Androgens → from zona reticularis

Medulla (Amino acid secretions)

Catecholamines

introduction

Glucocorticoids

Main glucocorticoids in humans:

- → Cortisol.
- → Corticosterone.
- → Cortisol : Corticosterone produced in humans in a ratio of 10:1
- → 90-95% bound to plasma protein.(since its steroid)
- → Under control primarily by ACTH.

Natural episodic secretion rhythms

- → After ACTH has been produced, cortisol will be evident 15 to 30 minutes later.
- → There are usually 7-15 episodes per day.
- → There is a major burst in the early morning before awakening.

Steroid Hormones

Transport

Steroid hormones when released from adrenal cortex into blood stream bind to plasma protein carries:

- **Cortisol binding globulin** (CBG) (transcortin).
- Albumin.
- Only unbound steroid hormones are biologically active
- (~2%)
- To cross the target tissue membrane, the hormone must

dissociate from its carrier protein.

- Importance: Binding to plasma proteins act as reservoirs and ensure a uniform distribution to all tissues.
- Aldosterone has a lower half-life than cortisol.

Regulation of cortisol release

Cortisol

Pattern of secretion:

- Increased release with coffee consumption.
- Increases proportionately with exercise time & intensity.

Cortisol metabolism

- \succ Free cortisol is excreted into urine.
- Metabolized in liver by reductases & conjugated to glucuronides and excreted via kidney.

Physiological effects of Cortisol:

1-Protein metabolism

- Reduces protein formation in all tissues Except liver.
- Extrahepatic protein stores reduced (catabolic).
- Amino acids not transported into muscle cells ↓ protein synthesis & ↑ amino acid blood levels.
- These high blood amino acid levels are transported more rapidly to hepatic cells for gluconeogenesis and protein synthesis in liver.

2- Carbohydrate metabolism

Increases blood glucose levels by:

- (+) gluconeogenesis in the liver.
- Decreasing utilization of glucose by cells via direct inhibition of glucose transport into cells.

3- Fat metabolism

- Lipolytic.
- Mobilizes fatty acids & glycerol from adipose tissue lead to↑ their blood concentrations, so more glycerol available for gluconeogenesis.
- Fat broken down & less formed due to less glucose transported into fat cells.
- Redistribution of body fat:

 ↑ formation of fat in trunk areas & face
 ↓ fat (& muscle) from extremities.
- Increases appetite.

4- Developmental Functions

- Permissive regulation of fetal organ maturation.
- Surfactant synthesis (phospholipid that maintains alveolar surface tension).
- Inhibition of linear growth in children due to direct effects on bone & connective tissue.

	★ Reduces degree of vasodilatation.(vasoconstriction)			
	★ Stabilizes lysosomal membrane.			
Anti- inflammatory	★ Decreases permeability of capillaries.			
initiationy	★ Decreases migration of white blood cells.			
	★ Suppresses immune system.			
Blood Cells and	★ Decrease production of eosinophils and lymphocytes.			
Immunity	★ Suppresses lymphoid tissue systemically therefore decrease T cell and antibody production → decreasing immunity.			
	This effect is useful in transplantation surgery in reducing organ rejection.			
	Cortisol has mineralocorticoid effect, not as potent as aldosterone.			
	★ Maintains body fluid volumes & vascular integrity.			
Circulation	★ BP regulation & cardiovascular function: Sensitizes arterioles to action of noradrenaline → Permissive effect. (تفزع معاها، تخليها تستجيب بشكل افضل)			
	★ Decreases capillary permeability.			
	★ Maintains normal renal function.			
	★ Negative feedback control on release of ACTH.			
CNS responses	★ Modulates perception & emotion.			
Mineral	★ Anti-vitamin D effect.			
metabolism				
GIT	★ Increases HCI secretion.(Might cause ulcers)			
	9			

Cortisol excess

<u>Exogenous:</u>	<u>Endogenous</u>	
Most cortisol excess is induced by steroid therapy (prednisone)	Due to excessive production of cortisol: →ACTH- independent:	
Example in:	-Primary adrenal defect (adenoma).	
→ Asthma		
→ Rheumatoid arthritis	→ACTH-dependent:	
→ Lupus.	-Overproduction of ACTH by pituitary.	
→Immunosuppression after transplantation.	-Overproduction of ACTH by ectopic ACTH- producing tumor. (Tumor secreting ACTH not in pituitary).	

Both exogenous & endogenous hyperfunction show manifestations of Cushing's disease.

Buffalo torso

• Redistribution of fat from lower parts of the body to the thoracic and upper abdominal areas

Moon Face

- Edematous appearance of face.
- Acne & hirsutism (has sex hormone effect)
 - (excess growth of facial hair)

 \succ

 \succ

 \succ

 \succ

Metabolism (Same but exaggerated effect)

Fat metabolism Protein metabolism Carbohydrate metabolism "Adrenal diabetes" ↑ blood glucose **Redistribution of** ↑ protein loss levels, up to 2x body fat: \succ Muscle atrophy, normal (200 mg/dl). weakness \succ \uparrow Trunk & face fat deposition. \downarrow sensitivity to insulin. Thin skin ↓ Extremities fat \succ bone matrix & mass -over secretion of insulin deposition. losses \rightarrow "burn out" the beta cells of the pancreas \succ bone formation \downarrow less resulting in lifelong DM. Ca2+ absorbed & more excreted in urine. osteoporosis In lymphoid tissue results in suppression of immune system. \succ Stria in skin \rightarrow due to lack of collagen formation.

Effect On..

Inflammation & Immunity	CNS	Circulation
Encreased infection susceptibility.	Initially euphoria but then replaced with	Hypertension due to Na retention & K excretion.
Ab synthesis suppressed & normal immune responses to infecting pathogens suppressed.	depression.	Hypervolemia.
Decrease in fibrous tissue formation.		increased Na absorption.
		Hypokalemia due to increased K excretion.

Cushing syndrome

Hypersecretion of glucocorticoids by the adrenal cortex characterized by weight gain in the trunk of the body but not arms and legs

Symptoms

- Proximal muscle wasting & weakness.
- Moon face, striae
- Osteoporosis.
- Glucose intolerance.
- HTN, hypokalemia.
- Thromboembolism.
- Depression, Psyc.
- Infection.v
- Glaucoma.

Treatment

- Removal of adrenal tumor if this is the cause.
- Microsurgical removal of hypertrophied pituitary elements to reduce ACTH secretion.
- Partial or total adrenalectomy followed by administration of adrenal steroids to compensate insufficiencies that develop.

Summary

Answer key: A,C,D,B,A,D,C

1- What is the most abundant Glucocorticoid that found in the body

A-Cortisol

B-Corticosterone

C-Aldosterone

D-Prednisone

2- The release of Glucocorticoids is controlled by :

A-TSH

B-ADH

C-ACTH

D-GH

3- Which of the following affect the release of Glucocorticoids :

A-circadian rhythm

B-coffee consumption

C-exercise

D-all of above

4- Which of the following is an effect of cortisol :

A-Increase utilization of glucose B-Increase gluconeogenesis C-decrease appetite

D-decrease oxidation of fatty acids

5- Cortisol attenuates fever by :

MEQS

A-reduce release of Interleukin-1 B-Increase release of TNF C-Increase release IL-6 D-B&C

6- Cortisol effect in Mineral metabolism is :

A-anti vit-K B-anti vit-B C-anti vit-C D-anti vit-D 7-Which of the following is an ACTHindependent :

A-Cushing's disease

B-Excess Cortisol due non pituitary tumors C-latrogenic Cushing's syndrome D-none of above

Q1:How can cortisol excess be caused by exogenous factors?

Ans: It might be induced by steroid therapy as in asthma or rheumatoid arthritis.

Q2:Mention the effect of cortisol on CNS?

Ans:Initially euphoria but replaced then with depression.

Q3:Briefly explain the role of hypothalamic-pituitary-adrenal axis in control of glucocorticoid secretion.

Ans:Hypothalamus secrete CRH in response to stimuli \rightarrow affect the release of ACTH from pituitary gland \rightarrow cause the release of cortisol from adrenal gland. Cortisol causes **Negative feedback** on CRH and ACTH.

Q4:Briefly explain the anti-inflammatory action of Glucocorticoid.

Ans: 1-Reduces degree of vasodilatation 2-Stabilizes lysosomal membrane 3-Decreases permeability of capillaries.

Q5:What mineralocorticoid affect Cortisol have and is it more potent than aldosterone?

Ans: No it's not, Maintains body fluid volumes & vascular integrity.

SAOS

Thanks for checking our work

vod Lyck

Done by: Hussain Alkaff Reem Labani

