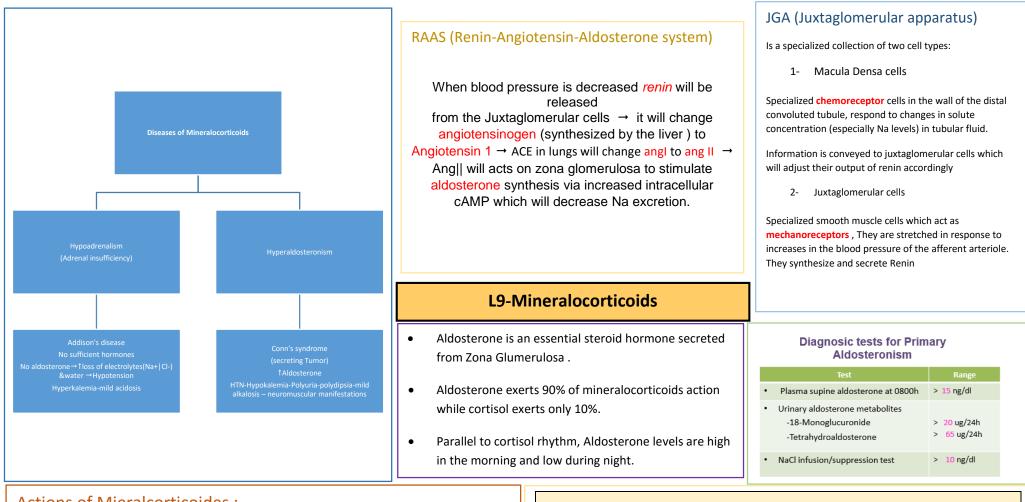

Physiology Revision for Final Exam

Done by:

Lina AlJurf Amerah Bin Zuair Sarah M AlJasser Reem Labani Hussain Alkaff Omar AlRahbeeni

Non-hormonal regulation: for fast exchange which the rapid regulation of ionized (free) calcium, the source of (ca) is amorphous salts (bone fluid).


Hormonal regulation: provide high capacity long term regulation of plasma calcium and phosphate concentrations. The source is hydroxyapatite crystals intestine and DCT in the kidney according to which hormone is regulating

infaroxyapatite er jotalo inteotine ana bei	In the kidney decording to which normone is rege	
PTH (parathyroid gland)	Vit D	Calcitonin (c cells of thyroid gland)
 PTH (parathyroid gland) Mechanism of action: 2nd massager cAMP. Secreted in response to LOW plasma calcium. Functions : Kidney: ca++ and Mg ions absorption. Phosphate absorption. In other words it increases renal excretion of phosphate an decease renal excretion of calcium Activation of active VitD (stimulates α hydroxylase) Bones: induce bone resorption by: Osteoblastic activity Stimulating osteoclastic activity and number. Intestinal tract: indirectly by stimulating the formation of active Vit D 	 Vit D Active VitD is catalyzed by α hydroxylase enzyme. PTH Prolactin Low Ca++ ions Intestinal tract: Calcium absorption Phosphate absorption Renal: Calcium absorption Renal: Calcium absorption Bone: Bone resorption. Bone resorption. Stimulates differentiation of immune cells. Important note: If VitD is taken in smaller quantities: Induce bone calcification by Increasing calcium and phosphate absorption from the intestine. If VitD is taken in a large amounts: Induce bone resorption by: facilitating PTH action on bones Stimulating osteoclastic activity and 	 Calcitonin (c cells of thyroid gland) Rapid action. Secreted in response to <u>High</u> plasma calcium. Other stimulants : Estrogen, gastrin, glucagon, secretin, CCK and β adrenoceptor stimulation Functions : Kidney: Calcium absorption. Calcium and phosphate excretion. Bones: calcium deposition of bones bone resorption
	number.	
Calcium	Calcium	Calcium
Phosphate V	Phosphate 📃	Phosphate

VitD Deficier	ncy	Osteoporosis	Disorders of parathyroid	hormone secretion
Rickets	Osteomalacia		Hyperparathyroidism	Hypoparathyroidism
				(rare)
In children	• Adult rickets.	 Osteoporosis is the 	• Primary:	Causes :
 Bone composition: 	• Rare.	most common of all	High PTH , High Ca++.	-parathyroid gland
Collagen > mineralized bone.	Bone	bone diseases in	Hypophosphemia	injury
Features:	composition:	adults, especially in old	Hypercalciuria	-autoimmune.
-low plasma calcium and	Collagen >	age.	Demineralisation of	• Low
phosphate	mineralized bone.	Bone composition:	bone	PTH,Low ca++
-weak bones	• Features:	Bone mass is reduced so both	High Alkaline	• Symptoms:
-tetany: low plasma Ca++	-Low plasma Calcium	collagenous and mineralized	phosphatase	Hypocalcemia
causes CNS excitability and	and Phosphate.	bone are affected.		Tingling in the lips
vice versa.	-Causes bone	 Mechanism of 	• Secondary:	Dry hair
Events:	disability.	development:	occurs as compensation	Muscle cramps
-early stages: normal plasma	-rarely cause tetany.	- the osteoblastic activity in	to low calcium levels.	Cataracts on the
ca++. There is no tetany.	Causes:	the bone is	High PTH , Low Ca++	eyes
High PTH to cover vitD action.	-steatorrhea:	usually less than normal so	• Causes :	Malformations of
-then the bones become	inability to absorb	the rate of bone	1) Low calcium diet	the teeth
exhausted of calcium, plasma	fats and vitD is a fat	osteoid deposition is	2) Pregnancy	Loss of memory
calcium levels drop rapidly.	soluble vitamin.	depressed.	3) Lactation	Headaches
- when blood calcium drop	- Osteomalacia-	- excess osteoclastic activity.	4) Rickets	Tetany latent or
below 7 mg\dl :	"Renal Rickets:	estrogen decreases the osteoclastic activity so that's why female after	5) Osteomalcia	ovret
Tetany signs	Chronic renal	menopause are more liable to develop	6) Chronic renal failure	Chvostek's sign
(positive Chvostek's sign)	disease→ vitD	osteoporosis	↓ 1,25(OH) – D3	Trousseau's sign
Eventually death	activation failure.	Causes :	synthesis	Delayed cardiac
because of tetanic	(↓ 1,25(OH) – D3 synthesis)	(1) lack of physical stress		repolarization with
respiratory spasm.	-,,	(2) malnutrition		prolongation of the
Treatment: supplying		(3) lack of vitamin C		QT interval
- adequate calcium and		(4) postmenopausal lack of		• Treatment :
phosphate in the diet		estrogen		Calcium carbonate
- Administering large		(5) old age		and vitamin D
amounts of vitamin D.		(6) Cushing's syndrom		supplements

Normal plasma calcium levels: 9-10.5 mg\dl

Steroidogenesis: the conversion of cholesterol into steroid hormones, by the enzyme cholesterol Desmolase to form pregnenolone

Actions of Mieralcorticoides :

Stimulates synthesis of Na/K-ATPase pumps, which results in :

- Increase the reabsorption of sodium in the principal cells of the convoluted tubules and collecting ducts.
- Increase the reabsorption of sodium in sweat , salivary and intestinal cells .
- Increase the excretion of pottasium and hydrogen ions from distal tubular cells to the urine .

As a net result it will maintain the extracellular volume

Direct Stimulators	Indirect stimulators	Inhibitors
High plasma potassium levels	Ang II (RAAS)	ANP
ACTH		

Regulation of Aldosterone

Main glucocorticoids in humans are: 1.

- Cortisol •
- Corticosterone

- Cortisol is produced more than corticosterone

- 90-95% is bound to plasma protein
- Under control primarily by ACTH

Natural episodic secretion rhythms:

- Cortisol appears 15-30 mins after ACTH gets produced
- There are 7-15 episodes per day
- Major burst is in the early morning before awakening

lifansoort

Bind to plasma protein carriers: (because they're steroid hormones)

- Cortisol binding globulin (CBG) (transcortin)
- Albumin

Unbound steroid hormones are the active form

Significance of binding:

1. Acts as reservoirs 2. Ensure a uniform distribution to all

Stimu

Stimuli releasing cortisol:

- **Physical trauma** •
- Infection
- Extreme heat & cold
- Exercise to the point • of exhaustion
- Extreme mental anxiety
- stress

- ↑ Blood glucose levels
- 2. Protein catabolism EXCEPT in liver
- Lipolysis & redistribution of body fat 3.
- Anti-inflammatory 4.
- 5. Immune system suppression

Continol excess

Exogenous: Mostly by steroid therapy (prednisone) Endogenous: ACTH independent or ACTH dependent

L10-Glucocorticoids

What happens when there's cortisol excess? Carbohydrates: ↑blood glucose & \downarrow sensitivity to insulin may lead to "adrenal diabetes" Proteins: proteolysis \rightarrow muscle atrophy & thin skin Bone matrix & mass losses which may lead to osteoporosis Fat: 个trunk & face fat deposition \downarrow extremities fat (lemon on sticks appearance)

Buffalo torso, Moon face, Acne & hirsutism, Striae (due to lack of collagen)

Note that: Cushing's syndrome is the general term while

Cushing's

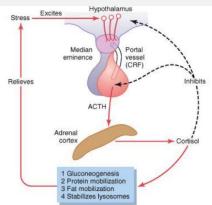
kidnev

urine

Marabolism

reductases & conjugated to

glucuronides & excreted by


Free cortisol \rightarrow excreted in

Metabolized in liver by

Disease is caused by a tumor in the pituitary gland that secretes excess ACTH

Regulation

Stress and circadian rhythm induce CRH release \rightarrow ACTH \rightarrow cortisol

S

γ

M

Ρ

т

0

Μ

S

Cushings

3. 4. 5.

2.

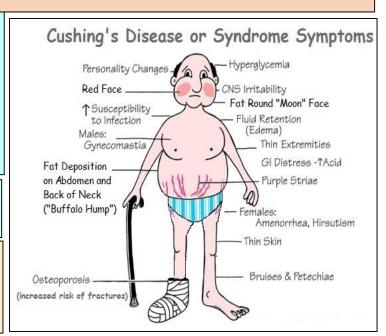
- Maintains normal renal function CNS -ve feedback & emotions 6.
- 7. Anti-vitamin D

Functions

vascular integrity

- 8. **↑** HCI
- 9. Permissiveness of fetal organ maturation

1. Maintains body fluid volumes &


Mineralocorticoid effect (less

potent than aldosterone

Permissive action on NE

 \downarrow capillary permeability

- 10. Surfactant synthesis
- 11. \downarrow linear bone growth
- Excessive amounts of cortisol in the body lead to cushing's syndrome
- Both exogenous & endogenous cortisol excess show • manifestations of Cushing's disease

11/ Adrenal Medulla

Epinephrine 80% More Beta \rightarrow cardiac stimulation **Norepinephrine** 20% more alpha \rightarrow constrict BV They are stored and released in response to stimuli.

1

2

Hormones affect (Fight or Flight)

Metabolism :Glycogenolysis Cardiovascular: increased HR + BP Respiration: increased O2 consumption

Pheochromocytoma

- Catecholamine-secreting tumor of chromaffin cells in adrenal medulla.
- Classic triad: 1-Resistant hypertension
 - 2-Headache 3-Sweating
- Other signs: Palpitation ,Chest pain,Anxiety, Glucose intolerance (DM),encrease metabolic rate.

Diagnosis:

High catecholamines \rightarrow in plasma increased metabolites of catecholamines \rightarrow in urine

Treatment:

Surgical resection

12/ Adrenal Androgens

Androgen:

- Masculinizing effect
- Promote anabolism and growth
- Zona reticularis, ACTH (hormone control)

2

- Target tissue → general body
- Most active androgen is testosterone

3

- Testosterone converted in male to estrogen in adipose tissue.
- In females androgen is produced as intermediate step in estrogen production.(some is released in blood)

Effect of adrenal androgen: 1-Growth of pubic & axillary hair 2-pubertal growth spurt.

3-Development and maintenance of female sex drive.

Dehydroepiandrosterone (DHEA)

- Steroid hormone
- primary precursor of estrogen.
- most abundant.

Androstenedione:

- Important source of estrogen in men and postmenopausal women.
- Used in Athletic or body building supplement.

Congenital adrenal hyperplasia:

Cause: Lack of an enzyme 21- hydroxylase.

 Block of synthesis of cortisol and aldosterone → abnormal feedback →more androgen synthesis

Hyper-secretion: Adrenal Congenital syndrome Males: Prepubertal \rightarrow rapid development of secondary sexual characters.

Females: causes Beard growth, deeper voice, body hair and clitoris that resembles a penis.

Secretion of Insulin:

- 1. Glucose enters B cell by facilitated diffusion via GLUT-2
- 2. Glucose is phosphorylated to glucose-6-phosphate by <u>Glucokinase</u> *((rate limiting enzyme)).
- 3. Oxidation of glucose-6-phosphate generates ATP. (by glycolysis).
- ATP acts on ATP-sensitive K+ channel, closing it. (sulfonylurea drug for diabetics works by closing this channel → ↑ insulin)
- 5. Reduced exit of K+ depolarizes membrane.
- 6. Depolarization opens voltage-gated Ca+2 channels.
- 7. Ca+2 enters B cell.
- 8. Ca+2 triggers exocytosis of insulin vesicles.
- 9. Insulin is secreted

Diabetes is characterized by the polytriad:

Polyuria (excessive urination).

Polydipsia (excessive thirst).

Polyphagia (excessive hunger).

Actions of Insulin:

1-Rapid (seconds):

(+) transport of glucose, amino acids, K+ into insulinsensitive cells.

2-Intermediate (minutes):

(+) protein synthesis

- (-) protein degradation
- (+) of glycolytic enzymes and glycogen synthase
- (-) phosphorylase and gluconeogenic enzymes

3-Delayed (hours):

(+) mRNAs for lipogenic and other enzymes

Insulin Receptor:

-the insulin receptor is a transmembrane receptor

- -belongs to the large class of tyrosine kinase receptors
- -Made of two alpha subunits and two beta subunits

- Insulin synthesis is stimulated by glucose or feeding and decreased by fasting
- Threshold of glucose-stimulated insulin secretion is 100 mg/dl.
- Glucose rapidly increase the translation of the insulin mRNA and slowly increases transcription of the insulin gene
- Glucose is the primary stimulator of insulin secretion!

Glucagon Actions:

- Its major target is liver:
- Glycogenolysis

•

- Gluconeogenesis
- Lipid oxidation (fully to CO2 or
- partially to produce keto acids
- "ketone bodies").
- Release of glucose to the blood from liver cells
- It also acts on adipose tissue but does NOT act on muscles.

L13,14-Endocrine Pancreas

Glucose Transport:		
Name	Location	
GLUT 1	erythrocytes, brain *Insulin	
	independent	
GLUT 2	liver, pancreas, small intestines,	
	kidney *insulin independent	
GLUT 3	Brain *Insulin independent	
GLUT 4 *	muscle, adipose tissue * insulin	
	sensitive transporter	

t a b l e 7-7 Comparison of Insulin and Glucagon

	Stimulus for Secretion	Major Actions	Overall Effect o Blood Levels
Insulin (tyrosine kinase receptor)	↑ Blood glucose ↑ Amino acids ↑ Fatty acids	Increases glucose uptake into cells and glycogen formation Decreases glycogenolysis and	↓ (glucose)
	Glucagon	gluconeogenesis	
	GIP	Increases protein synthesis	↓ [amino acid]
	Growth hormone Cortisol	Increases fat deposition and decreases lipolysis	↓ [fatty acid] ↓ [ketoacid]
		Increases K ⁺ uptake into cells	Hypokalemia
Glucagon (cAMP mechanism)	↓ Blood glucose ↑ Amino acids	Increases glycogenolysis and gluconeogenesis	î [glucose]
	CCK Norepinephrine, epinephrine, ACh	Increases lipolysis and ketoacid production	↑ [fatty acid] ↑ [ketoacid]

Action of insulin on Adipose tissue:

(+) glucose entry (+) fatty acid synthesis (+) glycerol phosphate synthesis (+) triglyceride dep0sition (+) lipoprotein lipase (-) of hormone-sensitive lipase (+) K uptake Action of insulin on Muscle: (+) glucose entry (+) glycogen synthesis (+) amino acid uptake (+) protein synthesis in ribosomes (-) protein catabolism (-) release of gluconeogenic amino acids (+) ketone uptake (+) K uptake Action of insulin on Liver: (-) ketogenesis (+) protein synthesis (+) lipid synthesis (-) gluconeogenesis, (+) glycogen synthesis,

(+) glycolysis.

t a b | e **7-9** Regulation of Glucagon Secretion

Factors that Increase Glucagon Secretion	Factors that Decrease Glucagon Secretion
\downarrow Blood glucose	↑ Blood glucose
\uparrow Amino acids (especially arginine)	Insulin
CCK (alerts alpha cells to a protein meal)	Somatostatin
Norepinephrine, epinephrine ACh	Fatty acids, ketoacids