CEREBRUM

Dr. Jamila EL Medany

Objectives

At the end of the lecture, the student should be able to:

- List the parts of the cerebral hemisphere (cortex, medulla, basal nuclei, lateral ventricle).
- Describe the subdivision of a cerebral hemisphere into lobes.
- List the important sulci and gyri of each lobe.
- Describe different types of fibers in cerebral medulla (association, projection and commissural) and give example of each type.

Cerebrum

- > Largest part of the forebrain.
- Divided into two halves, the (<u>cerebral hemipheres</u>), which are separated by a deep <u>median longitudinal</u> <u>fissure</u> which lodges the falx cerebri.
- In the depth of the fissure, the hemispheres are connected by a bundle of fibers called the **corpus** callosum.

Median longitudinal fissure

Structure of Cerebrum

- ☐ Cerebral cortex: Superficial layer of grey matter
- Medulla (White matter):
 Deeper to the cortex, contains axons to and from the cells of the cortex
- Basal ganglia: Number of nuclear masses buried within the white matter
- ☐ Lateral ventricle: The cavity of hemisphere

Surfaces(3)

Superolatera

Medial

Inferior (tentorial)

Lobes of Cerebrum

The superficial layer of grey matter is highly convoluted to form a complex pattern of ridges (gyri) and grooves (sulci). This arrangement maximizes the surface area of the cerebral cortex (about 70% is hidden within the depths of

sulci)

Three sulci, consistent in position, named **central**, lateral (sylvian) & parieto-occipital, divide each hemisphere into FOUR lobes: **Frontal**, **Parietal**, **Temporal & Occipital** (named after overlying bones) Functionally each hemisphere contains a 'limbic lobe' on the medial surface.

Function of Lobes

motor function, motivation, aggression, smell and mood

emotions,
memory
storage &
Linking
conscious
intellectual
functions with
the
unconscious
autonomic
functions,

reception
and
evaluation
of sensory
information

visual processing

smell, hearing, memory and abstract thought

□ Frontal lobe:

- Precentral gyrus.
- Superior & inferior frontal sulci divide the lobe into superior, middle & inferior frontal gyri.

□ Parietal lobe:

- Postcentral gyrus.
- Intraparietal sulcus divide the lobe into superior & inferior parietal lobules.

Precentral **Postcentral** gyrus gyrus Superior parietal lobule Inferior **Intraparietal** parietal lobule sulcus

Superior, middle & inferior frontal gyri

MAIN GYRI IN
SUPEROLATERAL
SURFACE

Superior, middle & inferior temporal gyri

☐ Temporal lobe:

- Superior & inferior temporal sulci giving rise to superior, middle & inferior temporal gyri.
- Insula: the gyrus in the depth of lateral sulcus, covered by parts of frontal, parietal & temporal lobes called the opercula (removed in lower picture.).

Medial Surface

- > Sulci: Parietooccipital, Calcarine, Cingulate
- ➤ Gyri: Cingulate, Parahippocampal

Brodmann's Map

- Brodmann produced a numbered, cytological map of cerebral cortex based upon its regional histological characteristics.
- Subdivisions with similar cellular and laminar structure are called 'areas'
- Brodmann's numbering of these cortical locations has become one of the standard ways to identify brain areas.

Functional Areas of the Cerebral Cortex

Frontal Lobe

<u>Premotor cortex:</u> Located in the region immediately anterior to the precentral gyrus (Brodmann's area 6).

Prefrontal

cortex: Extensive region of the frontal lobe anterior to premotor area.

Broca's (motor speech) area:

Located in the inferior frontal gyrus of the dominant hemisphere, usually left (Brodmann's area 44 & 45).

Primary motor cortex:

Located in precentral gyrus

Frontal eye field: Located in the middle frontal gyrus immediately in front of motor cortex (Brodmann's area 8).

Parietal lobe

Primary somatosensory cortex: located in postcentral gyrus (Brodmann's area 1, 2, 3).

Parietal association cortex:

located posterior to primary somatosensory cortex.

Occipital lobe

Primary visual cortex: located on the medial surface of the hemisphere, in the gyri surrounding the calcarine sulcus (Brodmann's area 17).

Visual association cortex: located around the primary visual cortex. Area 19

Temporal Lobe

Primary auditory cortex: located in the superior surface of the superior temporal gyrus (Brodmann's area 41, 42)

Auditory association cortex:

located immediately around the primary auditory cortex (also includes **Wernick's area**)

Parahippocampal gyrus:

auditory cortex

located in the inferomedial part of temporal lobe. Deep to this gyrus lies the hippocampus and the amygdala, which are parts of limbic system

Language AreaS

- Organized around the lateral Sulcus.
- Broca's area: concerned with expressive aspects of language.
- Wernick's area: responsible for comprehension of the spoken words.
- Angular gyrus & Supramarginal gyrus: nearby regions of temporal lobe and parietal lobe o fthe inferior parietal lobule) are important in naming, reading, writing, and calculation.

Hemispheric Dominance

- The localization of Speech centers & Mathematical ability is the criterion for defining the dominant cerebral hemisphere.
- In 96% of normal right-handed individuals and 70% of normal lefthanded individuals, the Left hemisphere contains the language centers. These are Left Hemisphere Dominant.
- Cerebral dominance becomes established during the first few years after birth.

Hemispheres communicate via the corpus callosum

White Matter

- Underlies the cortex, contains nerve fibers, neuroglia cells and blood vessels.
- The nerve fibers originate, terminate or sometimes both, within the cortex.
- Depending on their origin & termination, these nerve fibers are classified into three types: Association, Projection & Commissural

Association fibers: Unite different parts of the same hemisphere, are of two types: long & short

Commissural fibers:

Connect the corresponding regions of the two

Projection fibers: Consist of afferent and efferent fibers of the cerebral cortex

#