SPHINGOLIPIDS AND MYELIN STRUCTURE

OUTLINES

- Objectives.
- Background.
- Key principles.
- Take home messages.

OBJECTIVES

By the end of this lecture, the students should be able to:

- Recognize the Sphingolipids class of lipids as regard their chemical structure, tissue distribution and functions.
- Be familiar with the biochemical structure and function of myelin.
- •Learn the basics of biosynthesis of sphingolipids.
- Be introduced to Sphingolipidosis.

SPHINGOLIPIDS: BACKGROUND

- Essential component of membranes.
- Abundant in nervous tissue.
- Also exist extra-nervous tissue:

e.g. Receptors for:

Cholera toxins

Diphtheria toxins

Viruses.

SPHINGOLIPIDS: BACKGROUND

- Regulation of growth and development.
- Very antigenic:

Blood group antigen

Embryonic antigen

Tumor antigen

Cell transformation.

KEY PRINCIPLES

- Chemical structure of Sphingolipids.
- Types:
 - Glycosphingolipids (Glycolipids).
 - Sphingophospholipids, e.g. Sphingomyelin.
- Myelin structure and function.
- Sphingolipidosis.

SPHINGOLIPIDS: STRUCTURE AND TYPES

SPHINGOSINE

Long chain, unsaturated amino alcohol

CERAMIDE

Ceramide = Sphingosine + Fatty acid

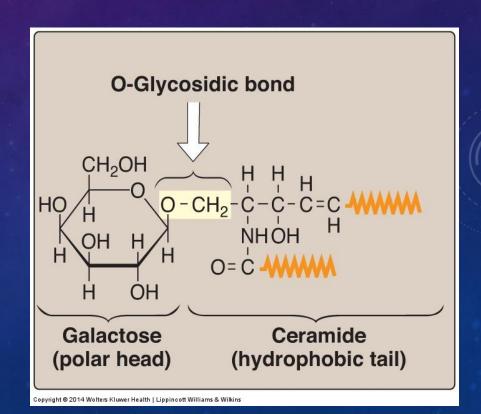
$$CH_3 - (CH_2)_{12} - CH - CH - CH - CH_2OH$$

OH NH

 $CH_3 - (CH_2)_n - C$

Long chain fatty acid

SPHINGOMYELIN

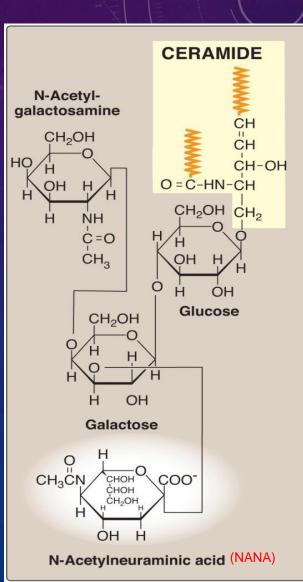

Sphingomyelin = Ceramide + Phosphorylcholine

Long chain fatty acid

CEREBROSIDES

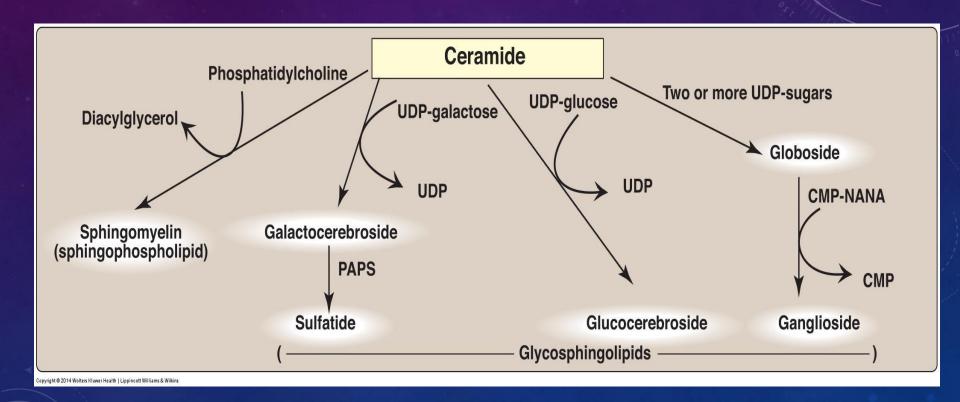
Cerebrosides = Ceramide + Monosaccharides

e.g. Galactocerebroside.



GANGLIOSIDES

Gangliosides = Ceramide oligosaccharides


NANA

e.g. G_{M2}.

pyright @ 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins

SPHINGOLIPIDS' SYNTHESIS

MYELIN STRUCTURE

Myelin is a specialized cell membrane that ensheathes an axon to form a myelinated nerve fiber.

Myelin is produced by:

Schwann cells: Periphral nerves.

Oligodendrocytes: CNS.

Myelin composition:

Lipids (80%): Main component: Cerebrosides

Other component: Sphingomyelin

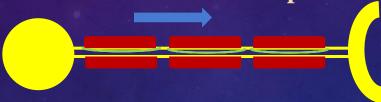
Proteins (20%): e.g. Myelin basic protein

MYELIN STRUCTURE

Fatty acid of Sphingomyelin:

Myelin sheath:

Very long chain fatty acids


Lignoceric 24:0

Nervonic 24:1(15)

MYELIN STRUCTURE AND FUNCTION

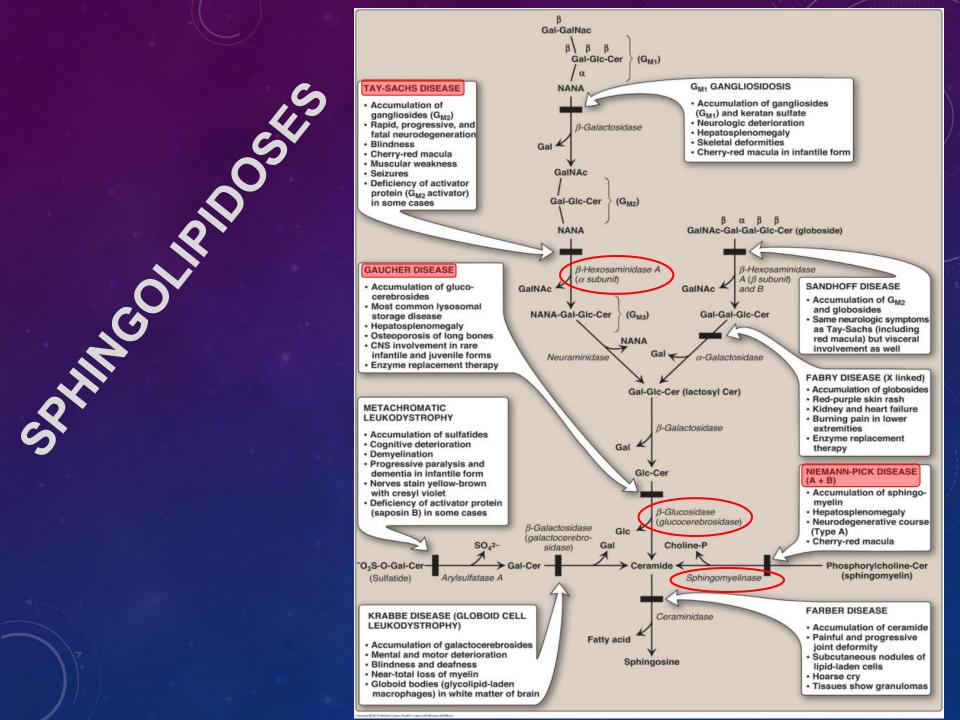
Myelin sheath insulates the nerve axon to avoid signal leakage and greatly speeds up the transmission of impulses along axons.

Direction of nerve impulse

Multiple sclerosis:

Neuro-degenerative, auto-immune disease.

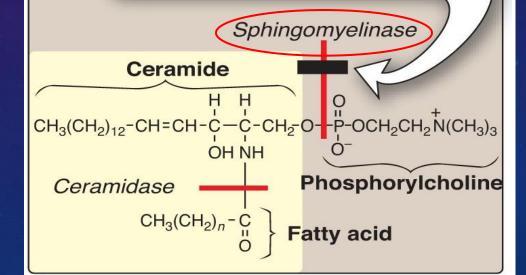
Breakdown of myelin sheath (demyelination).


Defective transmission of nerve impulses.

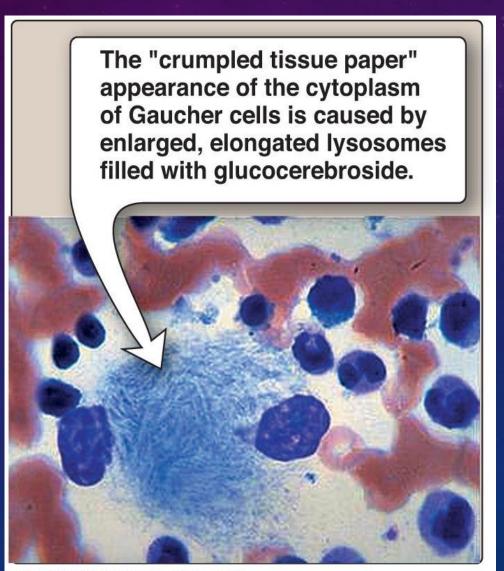
SPHINGOLIPIDOSES

- Synthesis (Normal); Degradation (Defective).
- Substrate accumulates in organs...
- Progressive, early death.
- Phenotypic and genotypic variability.
- Autosomal recessive (mostly).
- Rare, Except in Ashkenazi Jewish.

SPHINGOLIPIDOSES


- **Diagnosis:**
 - Measure enzyme activity:
 - Cultured fibroblasts or peripheral leukocytes.
 - Cultured amniocytes (prenatal).
 - Histologic examination.
 - DNA analysis.
- Treatment:
 - Replacement Therapy: e.g. Recombinant human enzyme.
 - Bone marrow transplantation: e.g. Gaucher disease.

NIEMANN-PICK DISEASE



- Sphingomyelinase deficiency
- Enlarged liver and spleen filled with lipid
- Severe intellectual disability and neurodegeneration (Type A)
- Death in early childhood (Type A)

Copyright @ 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins

GAUCHER DISEASE

Copyright @ 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins

TAKE HOME MESSAGES

- Sphingolipids are complex lipids that includes sphingophospholipids and glycolipids.
- Ceramide is the precursor of all sphingolipids.
- Sphingolipids are present mainly in nerve tissue, but they are also found extra-neural.
- Myelin sheath insulates the nerve axon to avoid signal leakage and speed up impulse transmission.
- Sphingolipidosis are rare genetic diseases due to defective degeneration of sphingolipids.

REFERENCE

Lippincott Illustrated Review of Biochemistry, 6th edition, 2014, Unit 3, Chapter 17, Pages 201-218.