Summary: | Cell death mechanisms in cerebral ischemia | Hemorrhagic in 32% of cases: etheir Intracerebral or Subarachnoid. Ischemic in 68% of cases: etheir Thrombotic or Embolic. Risk factors: Some increase the risk of one type of stroke (hemorrhagic or ischemic). Some increase the risk of both types. (e.g.: smoking, illegal drug use, high blood pressure) Occasionally, strokes occur in people who have no risk factors Cell death: Necrosis is commonly observed early after severe ischemic insults. Apoptosis occurs with more mild insults and with longer survival periods. The mechanism of cell death involves calcium-induced calpain-mediated proteolysis of brain tissue. Substrates for calpain include: Cytoskeletal proteins, Membrane proteins and Regulatory and signaling proteins. | | | |--|--|--|--| | Biochemical
Responses to
Ischemic Brain Injury | Oxidative stress | A condition in which cells are subjected to excessive levels of Reactive oxidizing species (ROS or RNS) & they are unable to counterbalance their deleterious effects with antioxidants. It has been implicated in the ageing process & in many diseases (e.g., stroke, atherosclerosis, cancer, neurodegenerative diseases) * It happens because of of Reactive Oxygen Species (ROS) & Reactive Nitrative Species (RNS): • They are mainly generated by microglia & astrocytes. • hey modulate synaptic transmission & non-synaptic communication between neurons & glia. • During periods of increased neuronal activity, ROS & RNS diffuse to the myelin sheath of oligodendrocytes activating Protein kinase C (PKC) → posttranslational modification of myelin basic protein (MBP) by phosphorylation. • They regulate neuronal signaling in both central & peripheral nervous systems. The brain is highly susceptible to ROS-induced damage because of: High concentrations of peroxidisable lipids, Low levels of protective antioxidants, High oxygen consumption, High levels of iron (acts as pro-oxidants under pathological conditions), The occurrence of reactions involving dopamine & Glutamate oxidase in the brain. * Molecular & Vascular effects of ROS in ischemicstroke: • Molecular effects: DNA damage, Lipid peroxidation of unsaturated fatty acids, Protein denaturation, Inactivation of enzymes, Cell signaling effects (e.g., release of Ca2+ from intracellular stores), Cytoskeletal damage, Chemotaxis. • Vascular effects: Altered vascular tone and cerebral blood flow, Increased platelet aggregability, Increased endothelial cell permeability | | | Biochemical
Responses to
Ischemic
Brain Injury | Oxidative
stress | The role of NO in the pathophysiology of cerebral ischemia: Ischemia → abnormal NO production. This may be both beneficial and detrimental, depending upon when and where NO is released. NO produced by endothelial NOS (eNOS) improving vascular dilation and perfusion (i.e. beneficial). In contrast, NO production by neuronal NOS (nNOS) or by the inducible form of NOS (iNOS) has detrimental (harmful) effects. Increased iNOS activity generally occurs in a delayed fashion after brain ischemia and trauma and is associated with inflammatory processes | |---|---------------------------|--| | | Metabolic
stress | Biochemical changes in The brain during ischemia: Ischemia → interruption or severe reduction of blood flow, 02 & nutrients in cerebral arteries → energy depletion (depletion of ATP & creatine phosphate. Result in: Inhibition of ATP-dependent ion pumps → Membranes depolarization → Perturbance of transmembrane ion gradients: | | | neurochemical
response | Following cerebral ischemia, extracellular levels of various neurotransmitters are increased. e.g.: Glutamate. Glycine. GABA. Dopamine |