

Objectives:

> Understand the role of neurotransmitters in the etiology and treatment of CNS diseases

Color index:

- Drugs names
- Doctors notes
- Important
- Extra

وأن أثابر في طلب العلم؛ **أسخره لنفع الإنسان**

Neurotransmitters

What are they?

Endogenous chemicals that transmit signals from a neuron to a target cell across a **synapse**.

- They packed into synaptic vesicles under the membrane in the axon terminal, on the presynaptic side.

- They are released into & diffuse across the synaptic cleft to bind to a specific receptors on the <u>post</u>synaptic side.

A membrane action potential arriving at the terminal opens axonal Ca channels; Ca inflow releases neurotransmitter molecules from many vesicles by fusing the vesicle membranes to the nerve terminal membrane. Membrane fusion generates an opening through which the molecules are expelled into the synaptic cleft via exocytosis.

- The neurotransmitter-receptor interaction must be terminated quickly to allow rapid, repeated activation of receptors. **One of the following can happen to neurotransmitters that have interacted with receptors**:

1- They can be quickly **pumped back** into the presynaptic nerve terminals by active, ATP-dependent processes (reuptake).

2- They can be **destroyed** by enzymes near the receptors.

3- They can **diffuse** into the surrounding area and be removed.

- Neurotransmitters taken up by the nerve terminals are repackaged in vesicles for reuse.

Neuropsychopharmacological science seeks to:

Understand how drugs can affect the CNS **selectively** to relieve pain, improve attention, induce sleep, reduce appetite, suppress disordered movements ect.

To provide the means to develop appropriate drugs to correct pathophysiological events in the abnormal CNS.

Importance of understanding neurotransmitters

1- Norepinephrine (NE)

• Pathway:

Fig. 33.1 Noradrenaline pathways in the brain. The location of the main groups of cell bodies and fibre tracts is shown in red. Pink areas show the location of noradrenergic terminals. (Am, amygdaloid nucleus; C, cerebellum; LC, locus ceruleus; Hip, hippocampus; Hyp, hypothalamus; MFB, medial forebrain bundle; NTS, nucleus of the tractus solitarius (vagal sensory nucleus); RF, brainstem reticular formation; Sep, septum; SN, substantia nigra; Str, corpus striatum; Th, thalamus.)

• Mood disorders and NE:

* Mania is characterized by: enthusiasm, rapid thought and speech patterns, extreme self-confidence, and impaired judgment. Opposite of depression, الهوس

2- Serotonin (5-HT)

• Pathway:

• Facts:

Diseases that are influenced by changes in serotonin brain content:

3- Dopamine:

• Pathway:

• Effects on dopaminergic synapses:

The same pharmacodynamic action may have distinct psychiatric "neurologic" and endocrine effects.

Diseases that are influenced by **dopamine** level:

4- Acetylcholine

There are two constellations of cholinergic neurons:

1. The basal forebrain constellation is located in the telencephalon, medial and ventral to the basal ganglia. It includes <u>the basal nucleus of</u> <u>Meynert (nucleus basalis)</u>, which provides cholinergic innervation to the <u>entire neocortex</u>, amygdala (Am), hippocampus (Hip), and thalamus (Th). The <u>medial septal nuclei (Sep)</u> provide cholinergic innervation to the <u>cerebral</u> <u>cortex</u>, hippocampus (Hip), and amygdala (Am).

2. The second constellation includes cholinergic neurons located in the dorsolateral tegmentum of the pons that project to the <u>basal ganglia</u>, <u>thalamus</u>, <u>hypothalamus</u>, <u>medullary reticular</u> <u>formation</u>, and deep cerebellar nuclei.

Extra, to help you remember the site of NTs production ③

Acetylecholine

Overview

Acetylcholine is the first neurotransmitter discovered.

Inside the brain Ach functions as a neuro-modulator, which is a chemical that **alters the way other brain structures process information** rather than a chemical used to transmit information from point to point.

Is Ach an inhibitory or excitatory neurotransmitter? Ach is both excitatory and inhibitory.

Role of Acetylcholine in the CNS

Ach is thought to be involved in **cognitive functions*** such as:

- Memory
- الإثارة ** Arousal >
- انتباه Attention <

*Cognitive functions can be defined as cerebral activities that lead to knowledge, including reasoning, memory, attention, and language.

** Arousal is the physiological and psychological state of being awoken or of sense organs stimulated to a point of perception.

What are the CNS diseases linked to ACH derangement?

- Damage to cholinergic (muscarinic) receptors is associated with memory deficits as in Alzheimer's disease.
- Muscarinic antagonists as hyoscine cause amnesia (deficit in memory).
- Increased brain level of Ach predispose to Parkinson's disease*
- Schizophrenia may be due to imbalance between Ach & dopamine brain levels.
- Depression may be a manifestation of a central cholinergic predominance.

* Dopamine & Ach work with each other \rightarrow when you take a dopamine antagonist = Ach will take the upper hand \rightarrow that's why the increased level of Ach may be predispose to Parkinson's disease.

Glutamic acid & GABA

Glutamic acid	GABA
 An excitatory neurotransmitter Increased levels predispose to Epilepsy Glutamate antagonist effects: treatment of epilepsy Reduction of brain damage following strokes & head injury. Drug dependence Schizophrenia: is a brain disorder that affects how people think, feel, and perceive. Drug dependence is the body's physical need, or addiction, to a specific agent. 	 It is the main inhibitory transmitter in the brain (in spinal cord = Glycin) It's present throughout the brain; there is very little in peripheral tissue. Decreased GABA brain content is associated with: Epilepsy Anxiety Convulsions Insomnia
Where are those voices coming from? I Saw Elephants Under My Bed Maybe I Maybe I Maybe I	Location of synthesis of neurotransmitters me monic by medicowesome 2014 : Mental Montal Mental Mental Fear Bills payments Stress Debt Work Doper vental Bills payments Stress Debt Work Doper vental
	dope tegmentum.

Extra, to help you remember the site of NTs production ©

	bottor 1

ملاحظة: الدكاترة قرؤوا هذا الجدول واللي بعده على السريع، وركز وا على النبور وتر انز مترز اللي معنا في المحاضر ة

Trans- mitter	Anatomic distribution	Receptor subtype	Receptor mechanism
Acetylcholine	Cell bodies at all levels, short and long axons	 M1: blocked by pirenzepine and atropine M2: blocked by atropine 	Excitatory : decrease K conductance & increase IP3 & DAG
	Motoneurons – renshew cells synapse	Nicotinic, N	Inhibitory : increase K conductance & decrease cAMP
			Excitatory: increase cation conductance
dopamine	Cell bodies at all levels, short, medium and long axons	D1: blocked by phenothiazine	Inhibitory: increase cAMP
		D2: blocked by phenothiazine & haloperidol	 Inhibitory (presynaptic): decrease ca conductance Inhibitory (postsynaptic): increase K conductance, decrease cAMP
Norepinephrine	Cell bodies in pons and brainstem project to all levels.	Alpha1: blocked by prazosin	Excitatory : decrease K conductance & increase IP3 & DAG
		Alpha2: activated by clonidine	 Inhibitory (presynaptic): decrease ca conductance Inhibitory (postsynaptic): increase K conductance, decrease cAMP
		Beta1 : blocked by propranolol	Excitatory : decrease K conductance & increase cAMP
		Beta2 :blocked by propranolol	Inhibitory: increase in electrogenic sodium pumps & increase cAMP
Serotonin (5- hydroxy trptamin)	Cell bodies in pons and midbrain project to all levels, GIT & platelets	5-HT _{1A} : buspirone is a partial agonist	Inhibitory: increase K conductance, decrease cAMP
		5-HT _{2A} : blocked by clozapine , resperidone & olanzapine	Excitatory : decrease K conductance & increase IP3 & DAG
		5-HT ₃ : blocked by ondansetron	Excitatory: increase cation conductance
		5-HT ₄	Excitatory : decrease K conductance 9

To understand better-2

Trans- mitter	Anatomic distribution	Receptor subtype	Receptor mechanism
GABA	Supraspinal interneurons: spinal interneurons involved in presynaptic inhibition & very little in peripheral tissues	GABAA: facilitated by benzodiazepine and zolpidem	Inhibitory: increase CL conductance
		GABAb: activated by baclofen	 Inhibitory (presynaptic): decrease ca conductance Inhibitory (postsynaptic): increase K conductance
Glutamate	Relay neurons at all levels	 -Four subtypes: NMDA subtype blocked by phencyclidine - Metabotropic subtype 	 Excitatory: increase Ca or cation conductance inhibitory (presynaptic): decrease ca conductance decrease cAMP Excitatory (postsynaptic): decrease K conductance & increase IP3 & DAG
Glycine	Interneurons in spinal cord and brain stem	Single subtype: blocked by strychnine	Inhibitory: increase CL conductance
eptide	Cell body at all	at all Three major subtypes: mu, delta & kappa.	Inhibitory (presynaptic): decrease ca conductance & decrease cAMP
Opioid p	levels		Inhibitory (postsynaptic) : increase K conductance

Summary of the lecture

Trans- mitter	Function	Diseases that are influenced
Acetylcholine	 Inside the brain Ach functions as a neuromodulator Ach is thought to be involved in cognitive functions: Memory Arousal Attention 	 Alzheimer's disease → Damage to muscarinic receptors. Amnesia → Muscarinic antagonist. Parkinson's disease → increased Ach level in CNS is predispose to Parkinsonism. Schizophrenia → ~ imbalance between Ach & dopamine. Depression
Dopamine		 Parkinson's disease attention deficit hyperactivity disorder, schizophrenia, depression drug addiction
Norepinephrine		 Mania → high NE Depression → Low NE
Serotonin (5- HT)	 Primarily found in the CNS, GIT, platelets Responsible for feeling of well-being & happiness. Plays an important role in regulation of ; Mood, sleep, appetite and pain perception 	 Depression Social phobia Obsessive Compulsive Disorders Generalized Anxiety Schizophrenia Vomiting
GABA	 The main inhibitory transmitter in the brain. 	 With low levels of GABA: Epilepsy Anxiety Convulsions Insomnia
Glutamate	 An excitatory neurotransmitter. 	 Therapeutic effect of glutamate antagonists: Strokes Head injury Schizophrenia Treatment of epilepsy

MCQs

Editing File

Thank you for checking our team!

أشير النشوان أسرار باطرفي العنود العمير حصة المزيني دلال الحزيمي ملال الحسين سرار الحسين سرار الحسين سرار الحسين لمي الحراميل لمي الماعيل نيورة البيحي

خــالــد أبـوراس

إبراهيم العسعوس احـمــد الخــيـاري عبدالعزيز الحـــماد فــوزان العتــيبي فـارس المـطيري مـاجـد العسـبلي محمد السحـيباني يوسـف الصـامل

Sources:

- 1-434's lecture
- 2- Wikipedia

3- Neurotransmitters (The Neuron) Part 2: <u>http://what-when-how.com/neuroscience/neurotransmitters-the-neuron-part-2/</u>
4- Pharmacology (Lippincotts Illustrated Reviews Series), 5th edition.
5- Basic & Clinical Pharmacology by Katzung, Chapter 21, 12th edition

