■hysiology

COLOR VISION

Objectives:

* Define color vision.
* Identify and describe the mechanism of color vision and the three types of cones, including the range of spectral sensitivity and color blindness.
* Identify color vision theory.
* Describe the items needed for any color perception.
* Compare different types of color blindness.

Done by:

- Team leaders: Shahad AIEnezi - Rawaf AIRawaf.
- Team members: Afnan almalki - Dalal alhuzaimi - Dania AlHindawi - Farrah Mendoza - Malak Alyahya - Hassan Al-shammasi.
Edited by: Shahad AIEnezi.
Revised by: Rawan Aldhuwayhi - Shahad AlEnezi.

Revised by
هشام الغفيلي

Color index: Important - Further explanation - Doctors Notes - Numbers.

[^0]
Introduction:

COLOR VISION Definition::

It the ability to discriminate between different colors.

- There are $\mathbf{3}$ primary colors (blue- red- green) sensed by cones in fovea \& appreciated within photopic vision.
- Sensation of extra spectral colors as white, yellow, orange, purple, can be produced by mixing properties of the blue $\boldsymbol{\&}$ red $\boldsymbol{\&}$ green in different combinations.
- Black is the sensation produced by the absence of light (not darkness because in dark we do not see black only) but it is probably a positive sensation because the blind eye does not "see black" rather, it "sees nothing." Black color has no waves. Darkness has waves.
- Colors have three attributes hue ${ }^{1}$, intensity, and saturation (degree of freedom from dilution with white).
- For any color there is a complementary color that, when properly mixed with it, produces a sensation of white.

ما ذكركم الكالام السابق بحصة الفنية بأولى ابتدائي؟

Color vision theory: (Young- Helmholtz theory)

هذه النظرية كغير ها من النظر يات لها قو اعد تُتّتد عليها وهي ملخصة كالتّلي:
I. We have 3 kinds of cones each has a specific photopigment (rhodopsin) \& is sensitive to one of the 3 primary colors:

	Blue cone system	Green cone system	Red cone system
Pigment:	Has S pigment (blue sensation pigment).	Has M pigment (green sensation pigment).	Has L pigment (red sensation pigment)
Wavelengt h it responds to:	SHORT wave length (440 nm)	MIDDLE wavelength (535 nm).	LARGE wavelength (at or $>535 \mathrm{~nm}$.
Color it senses:	senses the blue color	senses the green color \& less to yellow	senses the red \& yellow color.

[^1]
في هذه الصورة نرى بأن الـ (cones) ملونة حسب أنو اعها ولكن هي
بالحقيقة غبر ذلك هي بالعين الحقيقة نفس اللون ولكن لكل منهـا خاصية
اسنّقبال لون محدد لذلك وضحت بهذا الشكل.

من المر طلة الابتائئّة نعرف ان اللون الأزرق هو صاحب أقل طول موجي "Shortest" ؟ و عليه صبغته بيرمز لها بالحرف S، و اللون الأحمر هو صاحب أعلى طول موجي "longest" ↔ و عليه صيغته بيرمز لها بالحرف L.

II. Sensation of any color determined by:

A. Wavelength of light.
B. Amount of light absorbed by each type of cones.
C. Frequency of impulses from each cone system to ganglion cells which is determined by wavelength of light.
III. Each cone system respond to its color at a lower threshold than needed to sense other colors.

- E.g : (red cones respond to red or yellow color at a lower threshold than to green color).

ذكرنا إن عندنا ץ أنو اعمن الكونز وكان لكل كونز لون معين يستطيع استشُعار ونجد هنا أن هذه القاعدةتتص على أن كل كونز يستطيع استشُعار لونه الخاص عند ثريشولا منخفض على عكس استشعاره الألو ان الأخرى التي لا تنتمي له.
IV. Perception of white is due to equal stimulation of blue \& red \& green cones.

- There is NO wavelength corresponds to white, white is a combination of all wavelengths.

$$
\text { اللون الأبيض ينتج عن تحفبز الـ cones } 3 \text { بنفس اللرجة.. ليش أثشوف لابكوتي أبيض؟ لأن كل الكونز محفزة بنفس الدرجة! }
$$

Interpretation of color in the nervous system.

Color vision is coded by:

- Different responses in ganglion cells that depends upon the wavelength of stimulus which determine frequency of impulses in ganglion cells.
- The color perception in the brain depends on the amount of activity in each of the 3 cones systems as mentioned above.

Extra Explanation: Some ganglion cells are stimulated by all three types of cone. Such a ganglion is thought to signal "white" light. Most ganglion cells, however, are stimulated by light of one wavelength and inhibited by another. For example, red light may excite and green may inhibit a particular ganglion cell; this is called "color-opponent mechanism".

Perception of white light.

- There is no single wavelength of light corresponding to white; instead, white is a combination of all the wavelengths of the spectrum.
-As can be seen in this vector diagram white occupies the
 middle of the vector.

Perception of \rightarrow	Orange	Yellow	Blue
Red cones	99%	50%	0%
Green cones	42%	50%	0%
Blue cones	0%	0%	97%
Ratio:	$99: 42: 0$	${ }^{*} 50: 50: 0$	$0: 0: 97$

*Note: in both Guyton and boys' slide the ratios of 83:83:0 are interpreted by the nervous system as yellow!

Light absorption by the pigments of the three color-receptive cones of the
human retina.

This figure show the demonstration of the degree of stimulation of the different color-sensitive cones.
for example, if I want to know the perception of orange is due to stimulation of which cones?

1) mark the wavelength of orange color, then look at the vertical line of
 this wavelength.
2) mark the color cones that cross this line and at which level (light absorption), which are red (99\%) and green(42\%) cones, but not blue(0\%) cone.
So the ratio is 99:42:0.

Plates containing figures made up of colored spots on a background of similarly shaped colored spots. The figures are intentionally made up of colors that are liable to look the same as the background to an individual who is color blind. Some color blind individuals are unable to distinguish certain colors, whereas others have only a color weakness.

In the "top" chart, the person with normal vision reads " 74 ", whereas the reg-green color-blind person reads " 21 ".

In the "bottom" chart, the person with normal color vision reads " 42 ", whereas the red-blind person reads " 2 ", and the green-blind person reads " 4 ".

- So, what is the advantage of color vision? Color is important
 for distinguishing an object from its background.

The red and green cones are activated, therefore the person with normal vision can see the orange/brown color of the bear.

Color blindness

Color blindness:

- There is gene for rhodopsin on chromosome 3. "No color if mutated"
- There is gene for blue sensitive S cone pigment on chromosome 7.

[^2]

- There is gene for red and green sensitive cone pigment on X chromosome. "Most common type"!
- When a single group of color receptive cones is absent, (due to absence of their gene), the person cannot see or distinguish some colors from others.

Red

 blindness:- Green and red cones see different colors between wave length 525-675 nm and distinguish them.
- If either of these cones are absent, the person cannot distinguish 4 colors: red, green, yellow, and orange. Yellow and orange are produced by mixing red and green "go to the third page".
- He cannot distinguish red from green_(primary colors) so called red-green blindness.
- It's X-linked disease transmitted from females to their male sons, never occur in females as they have 2 X chromosomes.
- Male have one X and one Y chromosome, so if this X chromosome miss the gene color vision, he will get red-green color blindness because their gene is on X chromosome.
- Females show the disease only if both X chromosomes lack the gene.
- Females from color blind fathers are usually carriers that transmit it to the half of their sons.

Trichromats, dichromats, and monochromats.

Trichromats	Dichromats	Monochromats
Have 3 cone pigments. Normal or have slight weakness in detecting red, green, or blue color.	Have only 2 cone pigments systems, so he is completely blind to red, green, or blue. So they may have protanopia, deuteranopia, or tritanopia. They get color by mixing only 2 of the primary colors. يكون و احد من الكونز بيجمنتس فقط غِّر سليه، أما الالثين الباتيات تكون سليمة.	Have only one cone system or loss of all, so see only black, grey, or have no color perception. يكون فيه كون بيجميتت و احد فقط سليم، أما الاثثين اللباقيات تكون غير سليمة.
Dichromats "Nopia = blindness. Anomaly = weakness."		

Protanopia (red-blindness):-	Deutranopia (green-blindness):-	Tritanopia (blue-blindness):-
No red cones system (person has shortened spectrum wave length.) "red has a long wavelength but the person doesn't have the system that receives red \rightarrow shortened wavelength"	No green cones system (person sees only long and short wave length.)	No blue cones system.
Protanomaly	$\underline{\text { Deutranomaly. }}$	Tritanomaly
If only weakness in red color	If onlyweakness in green color vision.	If only weakness in blue color vision.

Picture from girls' slides:

Colour blinaness.

Each cone type contains a different light sensitive photo pigment. Colour blindness occurs when there is a defect in the genes that produce these photo pigments. Various combinations of defects can occur.

1) Missing one cone type
2) Missing two cone types
3) Missing all three cone types (vision is limited to the rods)
4) A cone type is made with a photo pigment different from normal.

References:

- 435 girls and boys slides and notes.
- Guyton's Physiology, Chapter 50.

[^0]: *Please check out this link before viewing the file to know if there are any additions or changes.

[^1]: It's a color or shade, which is dependent on its dominant wavelength and independent of intensity or lightness.
 .بالعربي هي درجة اللون أو تعدد الألوان.

[^2]: ${ }^{2}$ a color perception test for red-green color deficiencies, the first in a class of succe pseudo-isochromatic plates ("PIP"). It was named after its designer, Dr. Shinobu Ish University of Tokyo, who first published his tests in 1917.

