Done by:

- Summary: Bedoor Julaidan.
- MCQs: Kowthar almousa.

Summary!

Color Vision

color vision is the ability to discriminate between different colors.
-There are 3 primary colors (blue-green-red) sensed by cones.
-Sensation of extra spectral colors (white-orange...) can be produced by mixing the properties of the primary colors in different combinations.
العين قادرة على رؤية الألو ان الغير أساسية عن طريق دمج الألو ان الأساسية بنسب مختلفة
-Black means absence of the light "no wavelength is reflected from black" but at the same time it doesn't mean darkness, because in the darkness we don't see black only, we see shades of grey.
-Black is a positive sensation because the blind eye doesn't see black, rather it sees nothing.

Color vision theory (young-helmholtz theory)

we have 3 kinds of cones \rightarrow each has a specific rhodopsin which is sensitive to one of the 3 primary colors.

	Blue cone system	Green cone system	Red cone system
Pigment	S (short) pigment	M (middle) pigment	L (large) pigment
wavelength	short wavelength 440 nm	Middle wavelength less than 535 nm	Long wavelength at or $>535 \mathrm{~nm}$
Colours	Blue	Green and vellow	Red and yellow

-Each cone system respond to its color at a lower threshold than needed to sense the other colors.
So each cone system senses all the colors, but it needs a lower threshold to sense its own color.

- perception of the white is due to equal stimulation of the $\mathbf{3}$ cone systems. white is a combination of all the wavelengths.

Sensation of any colour is determined by:

1- wavelength of the light
2- amount of the light absorbed by each cone system
3 - frequency of impulses from each cone system which determined by the wavelength of the light. So the bottom line is that the color perception in the brain depends on the activity of each cone system " which go to the brain as an action potentials and the brain interprets these action potentials as the colour we see",

Perception of	Orange	Yellow	Blue
Red cones	99%	50%	0%
Green cones	42%	50%	0%
Blue cones	0%	0%	97%

-Ishihara charts: used to test color vision.

-Color blindness:

there is a gene for rhodopsin in chromosome $3 \rightarrow$ no color if mutated there is a gene for the S (blue) pigment in the chromosome 7 there is a gene for the $\mathrm{M}($ Green $)$ and $\mathrm{L}($ Red $)$ pigments in \mathbf{X} chromosome

- red green blindness

-red and green cones see different colors between wavelength of 525-675 nm -if either of these cones are absent, the person cannot distinguish 4 colors (red-green-yellow-orange) -he cannot distinguish between red and green \rightarrow red-green blindness -more common in males. -the males take this condition from their mothers (X-linked). - Females show the disease if both X chromosomes lack the gene.

Trichromats \rightarrow have $\mathbf{3}$ cone pigments normal or have slight weakness.
Dichromats \rightarrow have only $\mathbf{2}$ cone systems, they get colors by mixing only 2 primary colors.
Monochromats \rightarrow have only $\mathbf{1}$ cone system or loss of all. see only black or grey or have no color perception.

Dichromats

Protanopia	no red cone system. (the person has shortened spectrum wavelength "red has a long wavelength but the person doesn't have the system that receives red \rightarrow shortened wavelength"
Protanomaly	weakness in the red color vision

Deutranopia	no green cone system (person sees short and long wavelengths)
Deutranomaly	weakness in the green color vision

Tritanopia	no blue cone system
Tritanomaly	weakness in the blue color vision

Check your understanding!

1- Which rhodopsin is responsible for blue cone system?		2- Green cone system responds to green color at a threshold, than to a red color.	
A	M pigment	A	Higher
B	B pigment	B	Lower
C	S pigment	C	Same
D	L pigment	D	Non of the above
3- All of the following are true about white color EXCEPT for:		4- The L pigment responds to which of the following waves?	
A	It's an equal stimulation of all cone systems.	A	Large wavelength >535 nm
B	It's perception is due to green \& blue colors only.	B	Short wavelength (440 nm)
C	It has no waves.	C	Middle wavelength (535)
D	It's perception is due to green \& red colors only.	D	Non of the above
5- Which of the following ratios is related to the perception of blue color?		6- What of the following is the chart we use in color blindness test?	
A	0\% red, 0% green \& 97% of blue cones.	A	Snellen charts.
B	0\% red, 23% green \& 77% of blue cones.	B	Ishihara charts.
C	23% red, 23% green \& 54% of blue cones.	C	David's charts.
D	23\% red, 0% green \& 77\% of blue cones.	D	Non of the above.
7- If the gene responsible for rhodopsin is absent, the person will see:		8- The gene for red \& green sensitive cone pigment is on:	
A	Green \& red only.	A	X chromosome.
B	Blue \& green only.	B	X \& Y chromosomes.
C	Red \& blue only.	C	Y chromosome.
D	$\mathrm{He} /$ she will not see any color.	D	Chromosome number 3.
9- Weakness in red color vision is called:		10-Ahmed can only see black and grey colors, so he's:	

A	Tritanomaly.	A	Trichromatic.
B	Dectrabomaly.	B	Monochromatic.
C	Dectranopia.	C	Dichromatic.
D	Protanomaly.	D	Protanopic.
11- Munerah went to the clinic complaining from not seeing green color, so she has?	12- Which one of the following is related to normal persons?		
A	Detranopia.	A	Dichromats.
B	Detranomaly.	B	Monochromats.
C	Trinopia.	C	Trichromats.
D	Trinomaly.	D	Tetrachromats.

Answers :

$1-C$	$2-B$	$3-C$	$4-A$	$5-A$	$6-B$	$7-D$	$8-A$	$9-D$	$10-B$	$11-A$	$12-C$

