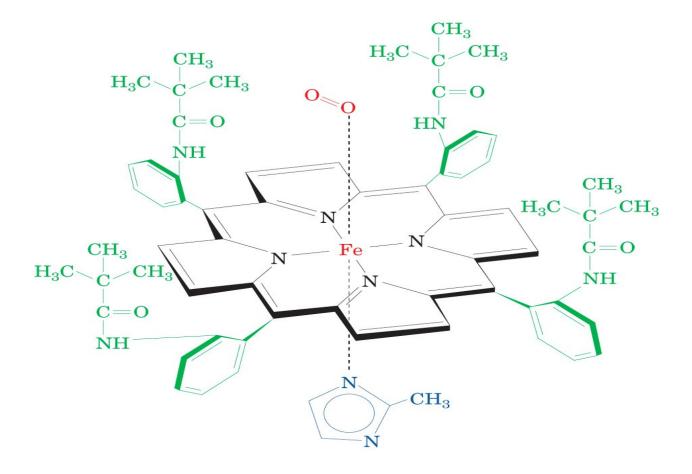
Structure and function of hemoglobin

Dr. Sumbul Fatma
Clinical Chemistry Unit
Department of Pathology

Objectives

By the end of this lecture, the students should be able to know:


- the structure and function of hemoglobin.
- the factors affecting oxygen binding to hemoglobin.
- examples of normal and abnormal hemoglobin structures.

Hemoglobin (Hb)

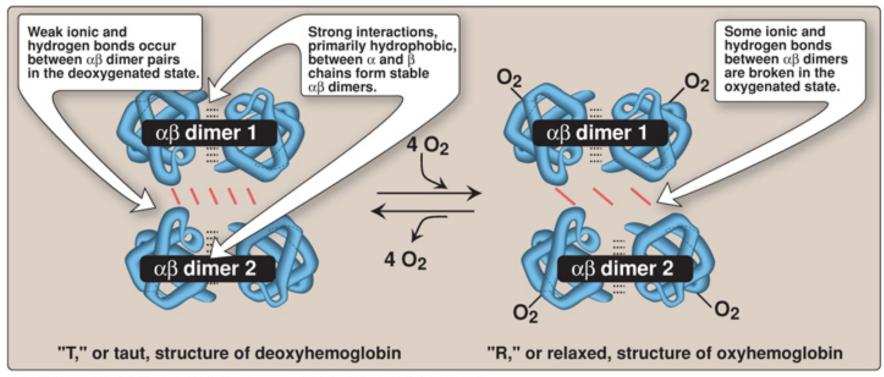
- A hemeprotein found only in red blood cells
- Oxygen transport function
- Contains heme as prosthetic group
- Heme reversibly binds to oxygen

The heme group

- A complex of protoporphyrin IX and ferrous iron (Fe²⁺)
- Fe²⁺ is present in the center of the heme
- Fe²⁺ binds to four nitrogen atoms of the porphyrin ring
- Forms two additional bonds with:
 - Histidine residue of globin chain
 - Oxygen

The heme group: Fe²⁺– porphyrin complex with bound O₂

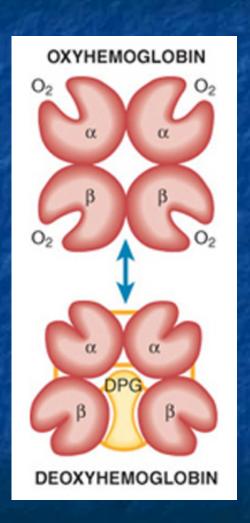
Types of Hb


Normal:	HbA (97%)
	HbA ₂ (2%)
	HbF (1%)
	HbA _{1c}
Abnormal:	Carboxy Hb
	Met Hb
	Sulf Hb

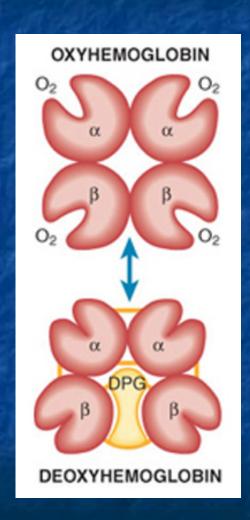
Hemoglobin A (HbA)

- Major Hb in adults
- Composed of four polypetide chains:
 - **Two** α and two β chains
- lacksquare Contains two dimers of $\alpha\beta$ subunits
- Held together by non-covalent interactions
- Each chain is a subunit with a heme group in the center that carries oxygen
- A Hb molecule contains 4 heme groups and carries 4 moelcules of O₂

Polypeptide chains β chains (146 a.a.) Fe²⁺ α chains (141 a.a.) Heme (protoporphyrin + iron)


HbA structure

Copyright @ 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

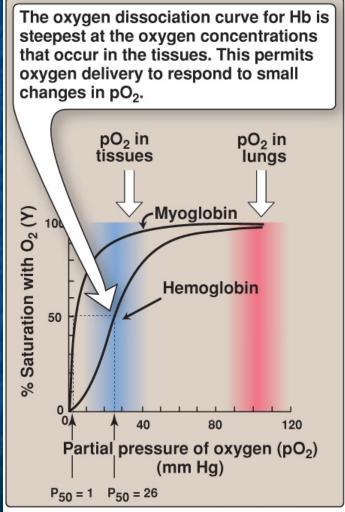

T-form of Hb

- The deoxy form of Hb
- Taut form
- The movement of dimers is constrained
- Low-oxygen-affinity form

R-form of Hb

- The oxygenated form of Hb
- Relaxed form
- The dimers have more freedom of movement
- High-oxygen-affinity form

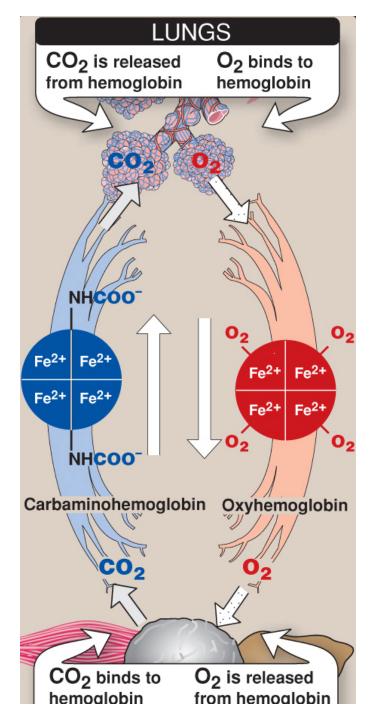
Hemoglobin function


- Carries oxygen from the lungs to tissues
- Carries carbon dioxide from tissues back to the lungs
- Normal level (g/dL):
 - Males: 14-16
 - Females: 13-15

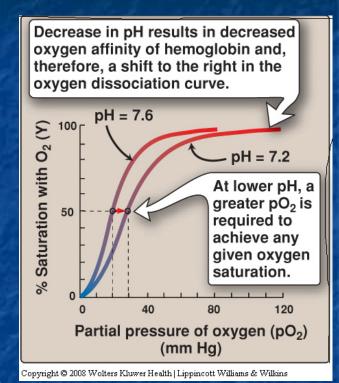
Factors affecting oxygen binding

- Three allosteric effectors:
 - pO₂ (partial oxygen pressure)
 - pH of the environment
 - pCO₂ (partial carbon dioxide pressure)
 - Availability of 2,3-bisphosphoglycerate

Oxygen Dissociation Curve


- The curve is sigmoidal
- Indicates cooperation of subunits in O₂ binding
- Binding of O₂ to one heme group increases O₂ affinity of others
- Heme-heme interaction

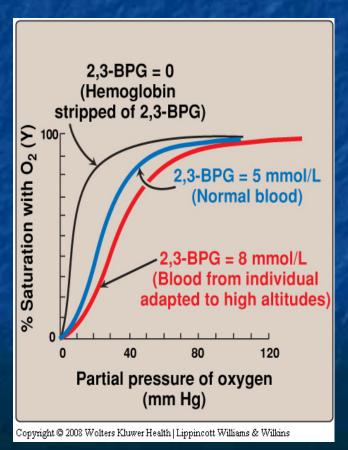
Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins


P₅₀

- Indicates affinity of Hb to O₂
- P₅₀(mm Hg): the pressure at which Hb is 50% saturated with O₂
- High affinity \rightarrow slow unloading of O_2
- Low affinity \rightarrow fast unloading of O_2
- Lung pO₂ is 100 mm \rightarrow Hb saturation 100%
- Tissue pO_2 is 40 mm \rightarrow Hb saturation reduces
- Hence O₂ is delivered to tissues

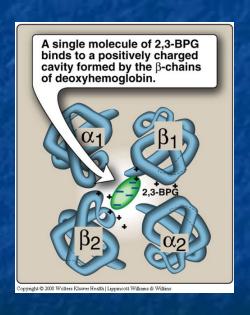
The Bohr effect

- Effect of pH and pCO₂ on:
 - Oxygenation of Hb in the lungs
 - Deoxygenation in tissues
- Tissues have lower pH (acidic) than lungs
- Due to proton generation (two reactions):
 - $-CO_2 + H_2O \rightarrow HCO_3^- + H^+$
- Protons reduce O₂ affinity of Hb



The Bohr Effect

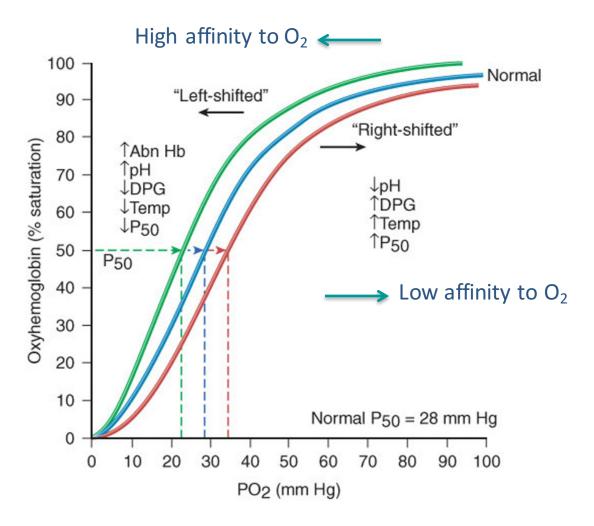
- Causing easier O₂ release into the tissues
- The free Hb binds to two protons
- Protons are released and react with HCO^3 to form CO_2 gas $(HCO_3^- + H^+ \rightarrow CO_2 + H_2O)$
- The proton-poor Hb now has greater affinity for O₂ (in lungs)
- The Bohr effect removes insoluble CO₂ from blood stream
- Produces soluble bicarbonate


Availability of 2,3 bisphosphoglycerate

- Binds to deoxy-Hb and stabilizes the T-form
- When oxygen binds to Hb, BPG is released

At high altitudes:

- -RBC number increases
- -Hb conc. increases
- -BPG increases


High altitude and O₂ affinity

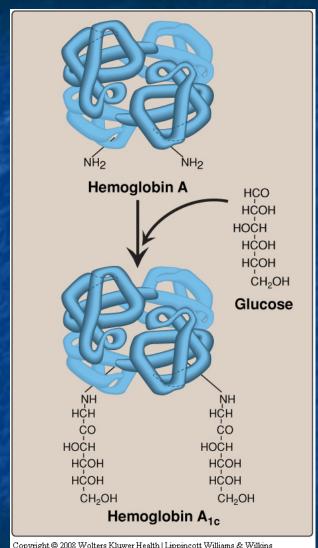
- In hypoxia and high altitude
 - 2,3 BPG levels rise
 - This decreases O₂ affinity of Hb
 - Thus increases O₂ delivery to tissues

High O₂ affinity

High O₂ affinity is due to:

- Alkalosis
- High levels of Hb F
- Multiple transfusion of 2,3 DPG-depleted blood

Fetal Hemoglobin (HbF)


- Major hemoglobin found in the fetus and newborn
- lacktriangle Tetramer with two α and two γ chains
- Higher affinity for O₂ than HbA
- Transfers O₂ from maternal to fetal circulation across placenta

HbA₂

- Appears ~12 weeks after birth
- Constitutes ~2% of total Hb
- lacktriangle Composed of two α and two δ globin chains

$\mathsf{HbA}_{\mathsf{1c}}$

- HbA undergoes nonenzymatic glycosylation
- Glycosylation depends on plasma glucose levels
- HbA1c levels are high in patients with diabetes mellitus

Copyright @ 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

Abnormal Hbs

Unable to transport O₂ due to abnormal structure

- Carboxy-Hb: CO replaces O₂ and binds 220X tighter than O₂ (in smokers)
- Met-Hb: Contains oxidized Fe³⁺ (~2%) that cannot carry O₂
- Sulf-HB: Forms due to high sulfur levels in blood (irreversible reaction)

Reference

Lippincott's Illustrated Reviews Biochemistry: Unit I, Chapter 3, Pages 25 -42.