Plasma Proteins

GIT Block

1 Lecture

Dr. Sumbul Fatma

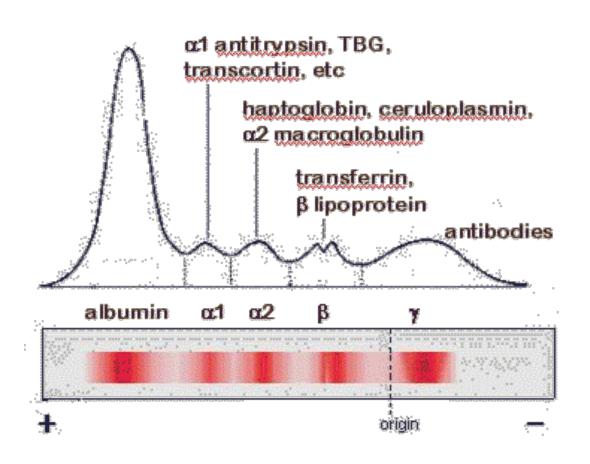
Overview:

- Functions and characteristics of plasma proteins
- Measurement of plasma proteins and diagnosis of diseases
- Electrophoretic patterns of plasma proteins
- Acute phase proteins

Plasma Proteins (pps)

- Plasma contains >300 different proteins
- Many pathological conditions affect level of plasma proteins
- Mostly synthesized in the liver
- Some are produced in other sites
- A normal adult contains ~70 g/L of pps

Functions of plasma proteins


- Transport (Albumin, prealbumin, globulins)
- Maintain plasma oncotic pressure (Albumin)
- Defense (Immunoglobulins and complement)
- Clotting and fibrinolysis (Thrombin and plasmin)

Measurement of Plasma Proteins

A) Quantitative measurement of a specific protein: Chemical or immunological reactions

- B) Semiquantitative measurement by electrophoresis:
 - Proteins are separated by their electrical charge in electrophoresis
 - Five separate bands of proteins are observed
 - These bands change in disease

Normal Pattern of Plasma Protein Electrophoresis

Types of Plasma Proteins

- Prealbumin
- Albumin
- α_1 -Globulins:
 - α₁-Antitrypsin, α-fetoprotein
- α_2 -Globulins:
 - Ceruloplasmin, haptoglobin
- β-Globulins:
 - CRP, transferrin, β2-microglobulin
- γ- Globulins

Prealbumin (Transthyretin)

- A transport protein for:
 - Thyroid hormones
 - Retinol (vitamin A)
- Migrates faster than albumin in electrophoresis
- Separated by immunoelectrophoresis
- Lower levels found in:
 - liver disease, nephrotic syndrome, acute phase inflammatory response, malnutrition
- Short half-life (2 days)

Albumin

 Most abundant plasma protein (~40 g/L) in normal adult

 Synthesized in the liver as preproalbumin and secreted as albumin

• Half-life in plasma: 20 days

• Decreases rapidly in injury, infection and surgery

Functions

- Maintains oncotic pressure:
 - The osmotic pressure exerted by plasma proteins that pulls water into the circulatory system
 - Maintains fluid distribution in and outside cells and plasma volume
- 80% of plasma oncotic pressure is maintained by albumin

Functions

- A non-specific carrier of
 - hormones, calcium, free fatty acids, drugs, etc.
- Tissue cells can take up albumin by pinocytosis where it is hydrolyzed to amino acids

 Useful in treatment of liver diseases, hemorrhage, shock and burns

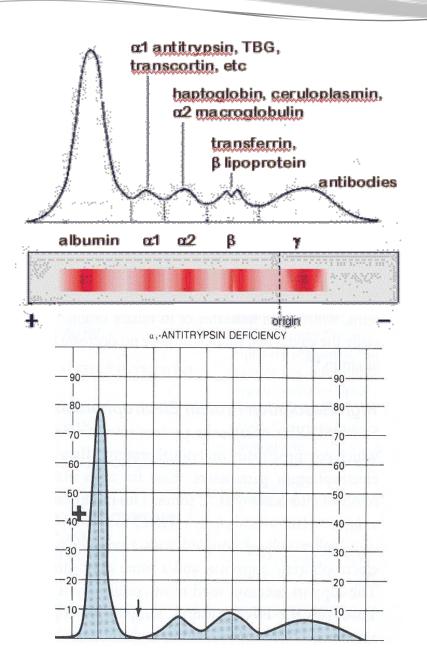
Hypoalbuminemia

Causes

- Decreased albumin synthesis (liver cirrhosis, malnutrition)
- Increased losses of albumin
 - Increased catabolism in infections
 - Excessive excretion by the kidneys (nephrotic syndrome)
 - Excessive loss in bowel (bleeding)
 - Severe burns (plasma loss in the absence of skin barrier)

Hypoalbuminemia

Effects


- Edema due to low oncotic pressure
 - Albumin level drops in liver disease causing low oncotic pressure
 - Fluid moves into the interstitial spaces causing edema
- Reduced transport of drugs and other substances in plasma
- Reduced protein-bound calcium
 - Total plasma calcium level drops
 - Ionized calcium level may remain normal

Hyperalbuminemia

- No clinical conditions are known that cause the liver to produce large amounts of albumin
- The only cause of hyperalbuminemia is dehydration

α_1 -Antitrypsin

- Synthesized by the liver and macrophages
- An acute-phase protein that inhibits proteases
- Proteases are produced endogenously and from leukocytes and bacteria
 - Digestive enzymes (trypsin, chymotrypsin)
 - Other proteases (elastase, thrombin)
- Infection leads to protease release from bacteria and from leukocytes

Types of α_1 -Antitrypsin

- Over 30 types are known
- The most common is M type
- Genetic deficiency of α₁-Antitrypsin
 - Synthesis of the defective α₁-Antitrypsin occurs in the liver but it cannot secrete the protein
 - α₁-Antitrypsin accumulates in hepatocytes and is deficient in plasma

Clinical Consequences of α_1 -Antitrypsin Deficiency

- Neonatal jaundice with evidence of cholestasis
- Childhood liver cirrhosis
- Pulmonary emphysema in young adults

Laboratory Diagnosis

- Lack of α₁-globulin band in protein electrophoresis
- Quantitative measurement of α_1 -Antitrypsin by:
 - Radial immunodiffusion, isoelectric focusing or nephelometry

α-Fetoprotein (AFP)

- Synthesized in the developing embryo and fetus by the parenchymal cells of the liver
- AFP levels decrease gradually during intra-uterine life and reach adult levels at birth
- Function is unknown but it may protect fetus from immunologic attack by the mother
- No known physiological function in adults

α-Fetoprotein (AFP)

- Elevated maternal AFP levels are associated with:
 - Neural tube defect, anencephaly
- Decreased maternal AFP levels are associated with:
 - Increased risk of Down's syndrome
- AFP is a tumor marker for:
 - Hepatoma and testicular cancer

Ceruloplasmin

- Synthesized by the liver
- Contains >90% of serum copper
- An oxidoreductase that inactivates ROS causing tissue damage in acute phase response
- Important for iron absorption from the intestine
- Wilson's disease:
 - Due to low plasma levels of ceruloplasmin
 - Copper is accumulated in the liver and brain

Haptoglobin

- Synthesized by the liver
- Binds to free hemoglobin to form complexes that are metabolized in the RES

 Limits iron losses by preventing Hb loss from kidneys

Plasma level decreases during hemolysis

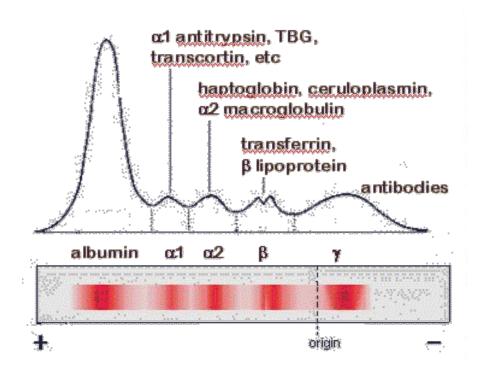
Transferrin

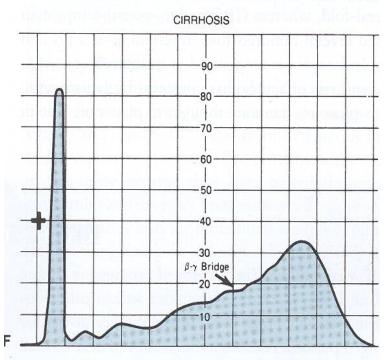
- A major iron-transport protein in plasma
 - 30% saturated with iron
- Plasma level drops in:
 - Malnutrition, liver disease, inflammation, malignancy
- Iron deficiency results in increased hepatic synthesis
- A negative acute phase protein

β₂–Microglobulin

- A component of human leukocyte antigen (HLA)
- Present on the surface of lymphocytes and most nucleated cells
- Filtered by the renal glomeruli due to its small size but most (>99%) is reabsorbed
- Elevated serum levels are found in
 - Overproduction in disease
- May be a tumor marker for:
 - Leukemia, lymphomas, multiple myeloma

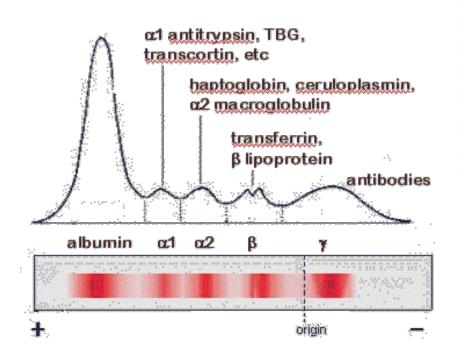
C-Reactive Protein (CRP)

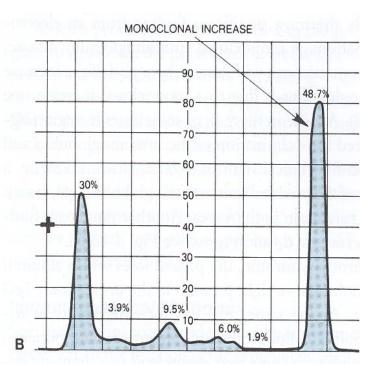

- An acute-phase protein synthesized by the liver
- Important for phagocytosis
- High plasma levels are found in many inflammatory conditions such as rheumatoid arthritis
- A marker for ischemic heart disease


Hypergammaglobulinemia

- May result from stimulation of
 - B cells (Polyclonal hypergammaglobulinemia)
 - Monoclonal proliferation (Paraproteinemia)

Polyclonal hypergammaglobulinemia:

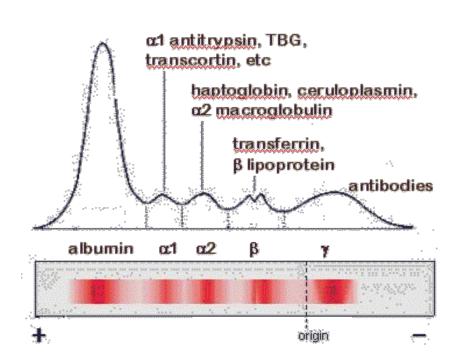

- Stimulation of many clones of B cells produce a wide range of antibodies
- γ-globulin band appears large in electophoresis
- Clinical conditions: acute and chronic infections, autoimmune diseases, chronic liver diseases

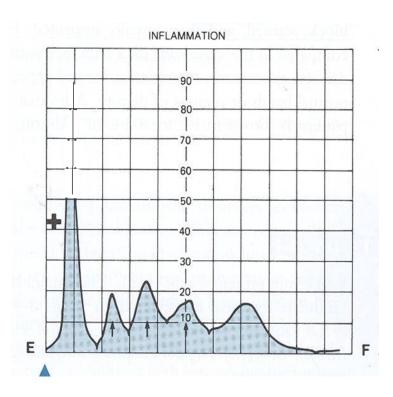


Monoclonal Hypergammaglobulinemia

- Proliferation of a single B-cell clone produces a single type of Ig
- Appears as a separate dense band (paraprotein or M band) in electrophoresis
- Paraproteins are characteristic of malignant B-cell proliferation
- Clinical condition: multiple myeloma

Positive Acute Phase Proteins


- Plasma protein levels increase in:
 - Infection, inflammation, malignancy, trauma, surgery
- These proteins are called acute phase reactants
- Synthesized due to body's response to injury
- Examples: α₁-Antitypsin, haptoglobin, ceruloplasmin, fibrinogen, c-reactive protein


Positive Acute Phase Proteins

- Mediators cause these proteins to increase after injury
- Mediators: Cytokines (IL-1, IL-6), tumor necrosis factors α and β, interferons, platelet activating factor

Functions:

- 1. Bind to polysaccharides in bacterial walls
- 2. Activate complement system
- 3. Stimulate phagocytosis

Negative Acute Phase Proteins

- These proteins decrease in inflammation
 - Albumin, prealbumin, transferrin
- Mediated by inflammatory response via cytokines and hormones
- Synthesis of these proteins decrease to save amino acids for positive acute phase proteins

References

- Lecture Notes in Clinical Biochemistry 7th edition, pages 92-98
- Clinical Biochemistry An Illustrated Colour Text pages 48-51