
Objectives:

- •Understand the key points of pathophysiology of the peptic ulcer disease
- Enumerate various classes of dugs used in peptic ulcer disease
- Know the characteristic pharmacokinetics, pharmacodynamics and side effects of drugs used in peptic ulcer disease.
- Know the cytoprotective drugs mainly misoprostol and its use in NSAIDsinduced peptic ulcer.
- Identify different antacids that are used to relief pain of peptic ulcer.
- Identify potential adverse drug interactions of anti-ulcer drugs.

Peptic ulcer disease (PUD)

 a localized lesion of the mucous membrane of the stomach (gastric ulcer) or duodenum (duodenal ulcer), typically extending through the muscularis mucosa.

Pathophysiology:

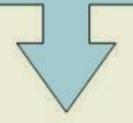
is imbalance between aggressive factors (acid & pepsin) and defensive factors (e.g. prostaglandins, mucus & bicarbonate layer). However, nowadays, it seems that H. pylori theory is very important.

Helicobacter pylori is the major etiological factor in peptic ulcer disease (95% in duodenal and 80% in

gastric ulcer).

Pathophysiology:

- Hydrochloric acid and pepsin destroy gastric and duodenal mucosa.
- 2. Mucus and bicarbonate ion secretions protect mucosa
- 3. **Prostaglandins** (PGE₂ & PGI₂) protect mucosa by:
 - inhibiting acid secretion
 - increasing mucus and bicarbonate production
 - enhancing mucosal blood flow.

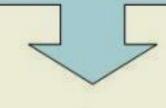

Peptic Ulcer Disease

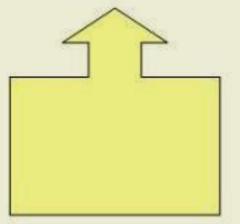
NORMAL

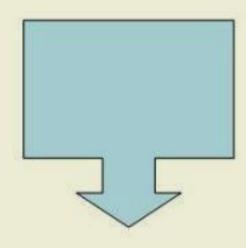
INCREASED AGGRESSION IMPAIRED DEFENSE

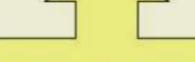
Aggressive Forces:

Gastric acidity Peptic activity




Defensive Forces:


Surface mucus secretion
Bicarbonate secretion into mucus
Mucosal blood flow
Apical surface membrane transport
Epithelial regenerative capacity
Elaboration of prostaglandins


Aggravating Causes:

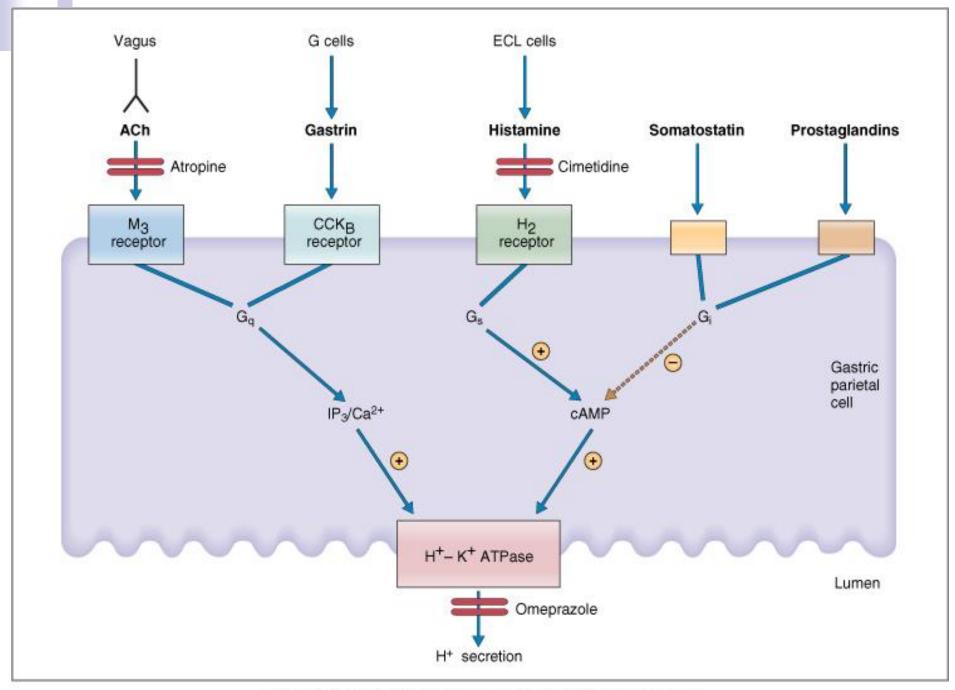
H pylori infection NSAID, aspirin Cigarettes, alcohol Impaired regulation of acid-pepsin secretion

Impaired Defense:

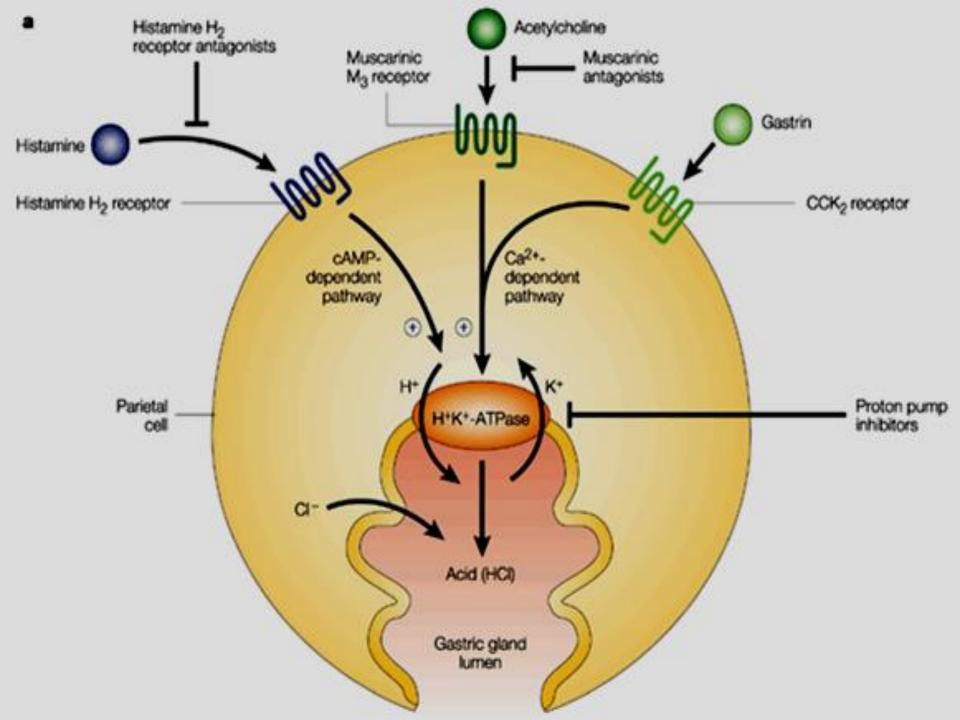
Ischemia, shock Delayed gastric emptying Duodenal-gastric reflux:

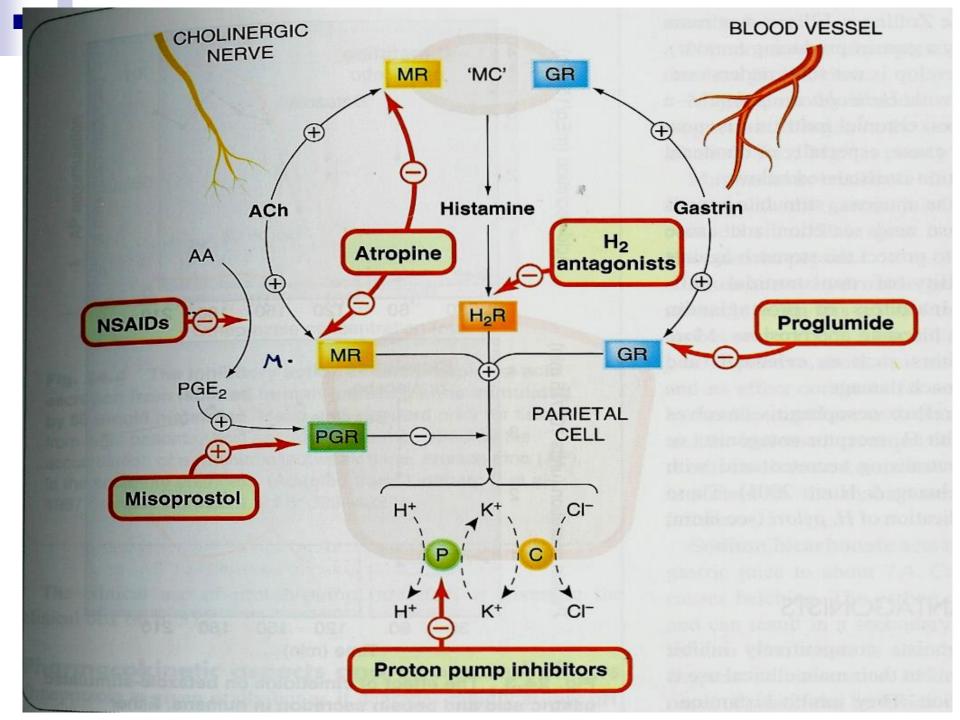
Etiology:

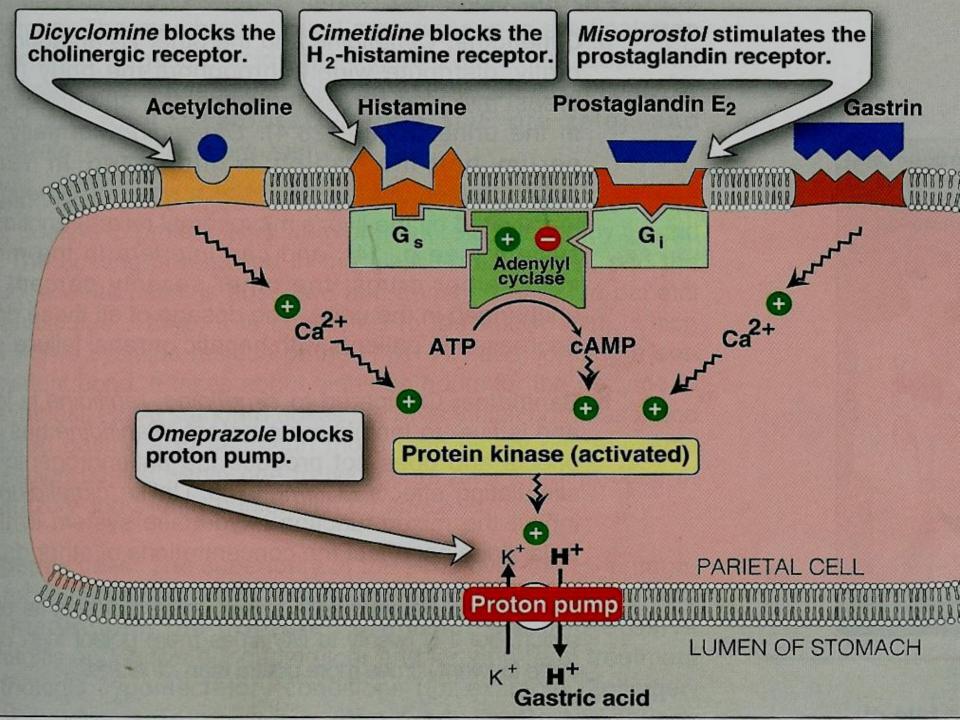
- >H. pylori infection
- >Alcohol
- >Smoking
- **Caffeine**
- >Genetic factors
- >Diet
- >Hypersecretory states (Zollinger Ellison syndrome)
- >Drugs (e.g.) NSAIDs; corticosteroids


Gastric secretions

- 1. HCl and intrinsic factor (Parietal cells).
- 2. Pepsinogens (Chief cells).
- 3. Mucus, bicarbonate (mucus-secreting cells).


Regulation of gastric secretions


Parietal cells secrete acid in response to:


- 1. Histamine (local hormone): H₂ receptors
- 2. Gastrin (hormone): CCK₂ receptors
- 3. Ach (neurotransmitter): M_3 receptors
- 4. Proton pump (H⁺/ K⁺ ATPase)

© Elsevier. Costanzo: Physiology 3E www.studentconsult.com

Treatment of peptic ulcer

- Eradication of H. pylori infections
- Hyposecretory drugs.
 - Proton pump inhibitors
 - H₂ receptor blockers
 - Antimuscarinic drugs
- Mucosal cytoprotective agents.
 - Prostaglandin analogues
- Neutralizing agents (antacids).

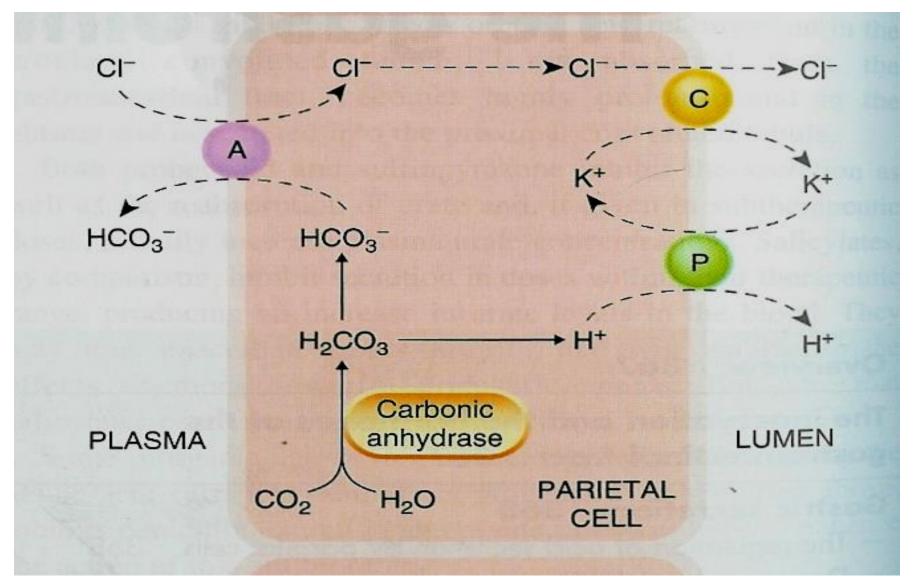
Gastric hyposecretory drugs


Hyposecretory drugs decrease gastric acid secretion → Promote healing & relieve pain.

Include:

- Proton pump inhibitors
- H₂ receptor blockers
- Antimuscarinic drugs

Proton Pump Inhibitor Drugs



Proton Pump Inhibitors (PPIs)

Omeprazole – Lansoprazole Pantoprazole - Raprazole

Acts by irreversible inhibition of proton pump (H+/K+ ATPase) that is responsible for final step in gastric acid secretion from the parietal cell.

Gastric secretion by parietal cells

Pharmacodynamics

- They are the most potent inhibitors of acid secretion available today.
- Produce marked inhibition of basal & meal stimulated-acid secretion (90-98%).
- Reduce pepsin activity.
- Promote mucosal healing & decrease pain.
- Proton pump inhibitors heal ulcers faster than H₂ blockers, and have H. pylori inhibitory properties.

Pharmacokinetics of PPIs

- Given orally
- Are pro-drugs
- Given as enteric coated formulations (unstable in acidic medium in stomach).
- Are rapidly absorbed from the intestine.
- Are activated within the acidic medium of parietal cell canaliculi.
- At neutral pH, PPIs are inactivated.
- Should not combined with H₂ blockers or antacids.

- Bioavailability is reduced by food.
- Given one hour before the meal.
- Have long duration of action (> 12 h-24 h).
- Once daily dose is sufficient
- Metabolized in the liver by Cyt-P450.
- Dose reduction is required in severe liver failure.

USES of PPIs

- >Eradication of H. pylori (combined with antimicrobial drugs).
- > Resistant severe peptic ulcer (4-8 weeks).
- > Reflux esophagitis.
- >Hypersecretory conditions as Zollinger Ellison syndrome and gastrinoma (First choice).

M

Zollinger Ellison syndrome

Gastrin -secreting tumor of the pancreas.

Gastrin produces:

- Parietal cell hyperplasia (trophic factor).
- Excessive gastric acid production.

Adverse effects to PPIs

- CNS: Headache
- GIT: Diarrhea & abdominal pain.
- Achlorhydria
- Hypergastrinaemia.
- Gastric mucosal hyperplasia.
 - Increased bacterial flora
 - Increased risk of community-acquired respiratory infections & nosocomial pneumonia
- Long term use:
 - Vitamin B₁₂ deficiency
 - Increased risk of hip fractures

H2 receptor blockers

- Cimetidine Ranitidine
- Famotidine Nizatidine

Mechanism of action

They reversibly and competitively block H₂

receptors on the parietal cells.

Pharmacokinetics

- Good oral absorption
- Given before meals.
- Famotidine is the most potent drug.
- Exposed to first pass metabolism (except nizatidine that has the greatest bioavailability)
- Duration of action (4-12 h).
- Metabolized by liver.
- Excreted mainly in urine.

	CIMETIDINE	RANITI	DINE FAM	IOTIDINE	NIZATIDINE
Efficacy	Millians leaves an	+ +++	; +	++	+++
Potency	+	++	+	++	++
Dose	400 mg bi	id 150 m	ng bid 20	omg bid	150 mg bid
Route	orally, IV	orally,	IV ora	lly, IV	orally
T 1/2	short (2	h) longer	(3h) l	onger (3h) shortest (1)
Duration	5-6	h 10 h	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 h	11 h
CYT P 45	0 +-	+ -		-	-
Antiandro	ogenic +	-		-	-
Drug inter	ractions ma	any No	No		No
		1			

Pharmacological actions:

- Reduce basal and food stimulated-acid secretion
- Block 90% of nocturnal acid secretion (which depend largely on histamine) & 60-70% of total 24 hr acid secretion. Therefore, it is better to be given before night sleep.
- Reduce pepsin activity.
- Promote mucosal healing & decrease pain

Uses:

- GERD (heartburn/ dyspepsia).
- Acute ulcer healing in moderate cases
 - Duodenal Ulcer (6-8 weeks).
 - Benign gastric ulcer (8-12 weeks).
- Pre-anesthetic medication (to prevent aspiration pneumonitis).
- Prevention of bleeding from stress-related gastritis.
- Post—ulcer healing maintenance therapy.

Adverse effects of H₂ blockers

- GIT disturbances: Nausea & vomiting.
- CNS effects: Headache confusion
 (elderly, hepatic dysfunction, renal dysfunction).
- Bradycardia and hypotension (rapid I.V.)
- CYT-P450 inhibition (Only Cimetidine)
 decrease metabolism of warfarin, phenytoin,
 benzodiazepines.

Endocrine effects (Only Cimetidine)

- Galactorrhea (Hyperprolactinemia)
- Antiandrogenic actions (gynecomastia impotence) due to inhibition of dihydrotestosterone binding to androgen receptors.

Precautions

Dose reduction of H_2 receptor blockers in severe renal or hepatic failure and elderly.

Prostaglandin analogues Misoprostol

- Prostaglandin analogues (PGE1)
- **■** ↓ HCL secretion.
- ↑ protective measures (↑ mucous/bicarbonate
 & gastric mucosal blood flow).
- Orally, must be taken 3-4 times/day.
- Used for NSAIDS-induced peptic ulcer.

Adverse effects:

- Abdominal cramps; diarrhea.
- Uterine contraction (dysmenorrhea or abortion).
- Vaginal bleeding.

Antacids

These drugs are mainly inorganic salts

- e.g.: NaHCO₃; CaCO₃; Al(OH)₃; Mg(OH)₂
 - acts by direct chemical neutralization of HCL and as a result may decrease pepsin activity.
 - used to relief pain of peptic ulcer & for dyspepsia.
- All antacids ↓ absorption of some drugs as tetracycline, fluoroquinolones, iron.

NaHCO3 (Sodium bicarbonate):

Effective, but systemic alkalosis may occur.

Contraindicated in CVS patients

Aluminum hydroxide:

- Constipation
- Systemic phosphate depletion (weakness, malaise, anorexia)

Magnesium hydroxide:

- Diarrhea
- Magnesium trisilicate-- slow-acting antacid

Calcium carbonate

- Milk-alkali syndrome
- Hyercalcemia
- Renal failure

Summary

- Test for H. pylori prior to beginning therapy.
- Acid-reducing medications are prescribed in case of PUD without H pylori infections.
- Acid-reducing medications for PUD include:
 - \square H₂ receptor blockers
 - □ PPIs should be used for acute therapy only if H2RAs fail or cannot be used, or as part of treatment for H. pylori.
- Complete H. pylori eradication is required to prevent relapse.
- PUD with H pylori infections can be treated with triple therapy or quadrable therapy