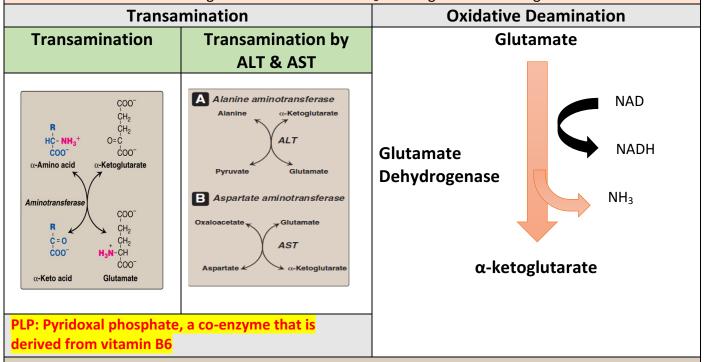
Urea cycle

Background

- Unlike glucose and fatty acids, amino acids are not stored by the body.
- Amino acids in excess of biosynthetic needs are degraded.
- Degradation of amino acids involves:
 - Removal of α -amino group → Ammonia (NH₃)
 - o Remaining carbon skeleton → Energy metabolism

Removal of α-amino group, formation of ammonia and its transport to liver


- I. Removal of α -amino group of amino acids and formation of ammonia:
 - 1. Transamination to glutamate
 - 2. Oxidative deamination of glutamate

II. Blood transport of ammonia into liver:

- 1. in the form of glutamine (most tissue)
- 2. in the form of alanine (muscle)

A: Removal of α -amino group & formation of ammonia :

- Amino groups of amino acids are funneled to glutamate (Why?) by transamination reactions with α-ketoglutarate
- ► Glutamate is unique. It is the only amino acid that undergoes rapid oxidative deamination
- \triangleright Oxidative deamination of glutamate will release NH₃ and re-generate α -ketoglutarate

B: Transport of NH₃ from peripheral tissues into the liver

- Ammonia is produced by all tissues and the main disposal is via formation of urea in liver
- Blood level of NH3 must be kept very low, otherwise, hyperammonemia and CNS toxicity will occur (NH3 is toxic to CNS)
- > To solve this problem, NH3 is transported from peripheral tissues to the liver via formation of:
 - ☐ Glutamine (most tissues)
 - □ Alanine (muscle)

Transport of NH₃ from peripheral tissues into the liver		
From most peripheral	From the muscle:	
tissues:		
NH3 is transported Into the	First, NH3 will be transferred into α-ketoglutarate to form glutamate	
liver through forming	Then, glutamate will give its amino group to pyruvate to form alanine by	
glutamine by glutamine	ALT	
synthetase.	Therefore, NH3 is transported from muscle into the liver through	
	forming alanine	
Release of ammonia from glutamine and alanine in the liver		
 Glutamine is converted into glutamate by glutaminase. 		
2. Alanine will give its amino group to α-ketoglutarate to form glutamate by ALT.		
3. Glutamate is converted into α-ketoglutarate and releasing NH ₃ by glutamate dehydrogenase.		
Urea Cycle		
Urea is the major form for disposal of amino groups derived from amino acids		
Urea cycle occurs in the liver		
One nitrogen of urea is from NH3 and the other nitrogen from aspartate		
Urea is transported in the blood to the kidneys for excretion in urine		
The five enzymes of urea cycle:		
1. Carbamoyl phosphate synthetase I		
2. Ornithine transcarbamoylase (OCT)		
3. Argininosuccinate synthase		
4. Argininosuccinate lyase		
5. Arginase		
Urea Cycle: Regulation (IMP)		
Rate-limiting enzyme of urea cycle:		
Carbamoyl phosphate synthetase I (CPSI) Allosteric activator of CPSI: N-Acetylglutamate		
N-Acetylglutamate is synthesized by: N-Acetylglutamate synthetase (NAGS) in presence of		
arginine		
☐ NAGS deficiency is efficiently treated with Carbaglue, a CPS1 activator		
Fate of Urea		
	NUI 1 and in	
	NH3 Lost in feces	
	$NH_1 + CO_1$ by	
Urease		
Urea in the blood NH3 Reabsorbed		
biood	mostly in the into blood	
	kidney excreted in urine	
The action of intestinal urease to form NH ₃ is clinically significant in renal failure:		
Renal failure $ o$ \uparrow blood urea $ o$ \uparrow urea in the intestine $ o$ $urease$ $ o$ \uparrow NH3 blood level (acquired		
hyperammonemia)		
Normal blood level of ammonia: 5 – 50 μmol/L		

Hyperammonemia		
Acquired hyperammonemia:	Inherited hyperammonemia:	
1. Liver diseases: Acute: Viral hepatitis or hepatotoxic Chronic: Cirrhosis by hepatitis or alcoholism 2. Renal failure	Genetic deficiencies of any of the 5 enzymes of urea cycle or the activator enzyme for CPSI: CPSI, OTC, ASS, ASL, arginase or NAGS Ornithine transcarbamoylase deficency: X-linked recessive Most common of congenital hyperammonemia Marked decrease of citrulline and arginine Others: Autosomal recessive	

Clinical Presentation of Hyperammonemia

- > Lethargy and somnolence
- > Tremors
- Vomiting and cerebral edema
- Convulsions
- Coma and death

Management of Hyperammonemia

- 1. Protein restriction
- 2. **Volume repletion** to maintain renal function Use 10% dextrose in water but *limit the use of normal saline*
- 3. Ammonia removal by hemodialysis &/or drugs
- 4. Avoid drugs that increase protein catabolism (eg, glucocorticoids) or inhibit urea synthesis (eg, valproic acid), or have direct hepatotoxicity

Drug Treatment of Hyperammonemia

- A. Drugs that scavenge ammonia by creating an alternate pathway to excrete N₂- precursors:
 - 1. I.V. Sodium phenylacetate & sodium benzoate (Ammonul)
 - 2. Oral sodium phenyl butyrate (Buphenyl)
 - 3. I.V. Arginine: for all UCDs except UCD due to arginase deficiency (argininemia)
- **B.** Activators to CPSI (Carglumic acid "Carbaglu"): For hyperammoniemia due to NAGS deficiency

Sodium phenyl butyrate (Buphenyl)

Prodrug that is converted to phenylacetate.

Phenylacetate condenses with glutamine forming phenylacetylglutamine that is excreted in urine