Vitamin K	
Types	Occurs in several forms: Vitamin K ₁ (Phylloquinone) Vitamin K ₂ (Menaquinone) Vitamin K ₃ (Menadione) – synthetic form
Sources	Dietary sources: - Cabbage, kale, spinach, egg yolk, liver
Sources of Vitamin K	 Phylloquinone: Green leafy vegetables Menaquinone: Intestinal bacteria Intestinal bacterial synthesis meets the daily requirement of vitamin K even without dietary supplement Menadione: synthetic form A precursor of menaquinone
RDA for Vitamin K (mg/day) (you don't have to memorize it)***	 Infant (0-1 year): 2-2.5 Children (1-8): 30-55 Men (19+): 120 Women (19+): 90 Pregnancy / lactation: 90 / 90 UL: Not established

Functions of Vitamin K

- Coenzyme for the synthesis of prothrombin and blood clotting factors in the liver
 - 1- Prothrombin and clotting factors are protein in nature
 - 2- Synthesis of prothrombin, clotting factors II, VII, IX, X require carboxylation of their glutamic acid (Glu) residue
 - 3- Mature prothrombin and clotting factors contain g-carboxyglutamate (Gla) after carboxylation reaction
 - 4- Vitamin K is essential for the carboxylase enzyme involved
 - 5- Dihydroquinone form of vitamin K is essential for this reaction
- Prothrombin platelet interaction
 - 1- Carboxylated prothrombin contains two carboxylate groups (COO⁻)
 - 2- These groups bind to Ca²⁺ forming prothrombin-calcium complex
 - 3- The complex then binds to phosholipids on the surface of platelets (important for blood clotting)
 - 4- Converting prothrombin to thrombin and initiating clot formation
- Synthesis of g-carboxyglutamate in osteocalcin
 - 1- Osteocalcin is a bone turnover protein
 - 2- Also called Bone Gla Protein (BGP)
 - 3- Involved in bone formation, mineralization and resorption
 - 4- g-Carboxyglutamate is required for osteocalcin binding to hydroxyapatite (a calcium mineral) in the bone
 - 5- The binding mechanism is similar to that of prothrombin-platelet binding

Analogs of Vitamin K

- Anticoagulant drugs: warfarin and dicoumarol
 - Structural analogs of vitamin K
- They inhibit the activation of vitamin K to hydorquinone form (inhibiting the reductase enzyme)
- Prothrombin and clotting factors are not carboxylated
- Hence blood coagulation time increases upon injury
- Carboxylation of glutamate requires vitamin K
- The process is inhibited by warfarin

Deficiency of Vitamin K

- Deficiencies are rare: it is synthesized by intestinal bacteria
- Hypoprothrombinemia: increased blood coagulation time
- Some second-generation cephalosporin drugs cause this condition due to warfarin-like effects (antibiotics given with vit. K)
- May affect bone growth and mineralization
- Lipid malabsorption can lead to vitamin K deficiency
- Prolonged antibiotic therapy

Especially in marginally malnourished individuals (e.g. debilitated geriatric patients)

- Gastrointestinal infections with diarrhea
- Both of the above destroy the bacterial flora leading to vitamin K deficiency
- Deficiency most common in newborn infants

Newborns lack intestinal flora

Human milk can provide only 1/5th vitamin K

Supplements are given intramuscularly at birth

Clinical Manifestations of the Deficiency

- Hemorrhagic disease of the newborn
- Bruising tendency, ecchymotic patches (bleeding underneath the skin)
- Mucus membrane hemorrhage
- Post-traumatic bleeding / internal bleeding
- Prolonged prothrombin time

Toxicity of Vitamin K

- Prolonged supplementation of large doses of menadione can cause:
 - Hemolytic anemia
 - Jaundice
- Due to toxic effects on RBC membrane