ENDOCRINOLOGY (INTRODUCTION)

Dr. Hana Alzamil King Saud University

- Endocrine vs exocrine gland
- Output Chemical messengers
- Hormone
 - Definition
 - Chemical structure
 - Paracrine, autocrine, endocrine, neuroendocrine
 - Transport and clearance

Mechanism of action

- Receptors, down-regulation and up-regulation
- Intracellular signaling
- Second messenger (cAMP, IP3)

- A. Exocrine gland
 - Ducts
 - Lumen and surfaces
- **B.** Endocrine gland
 - Chemical messengers
 - Blood stream

CHEMICAL MESSENGERS

- The activities of cells, tissues and organs are coordinated by chemical messengers
 - Neurotransmitters
 - Endocrine hormones
 - Neuroendocrine hormones
 - Paracrines
 - Autocrines
 - Cytokines

SMALL GROUP ACTIVITY

- Divide into 6 groups
- Explain
 - Neurotransmitter
 - Neurondocrine
 - Endocrine
 - Paracrine
 - Autocrine
 - Cytokines

(a) Endocrine signaling

(b) Paracrine signaling

(c) Autocrine signaling

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

(d) Synaptic signaling

(e) Neuroendocrine signaling

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

CYTOKINES

• Peptides (interleukins, lymphokines, adipokines)

- Secreted by cells into extracellular fluid.
- Can function as

(b) Paracrine signaling

(c) Autocrine signaling

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

LARGE GROUP ACTIVITY

• List the endocrine glands.

• Endocrine glands:

- Pituitary
- Thyroid
- Parathyroid
- Adrenal
- Pancreas
- Ovaries
- Testes

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

- The multiple hormone systems play a key role in regulating almost all body functions:
 - Metabolism
 - Growth and development
 - Water and electrolyte balance
 - Reproduction
 - Behavior

- Definition :
 - Hormone is a chemical substance released by group of cells to control the function of other type of cells.

• Types of hormones

- Affect many different types of cells (eg. GH and Thyroxin)
- Affect only specific target cells (eg. ACTH and estrogen)

• What are target cells?

Target cells refer to cells that contain specific receptors (binding sites) for a particular hormone.

Silverthorn, Human Physiology, 3rd edition Figure 6-1&2

Chemical structure of hormones

- Three general classes of hormones:
 - Proteins and polypeptides (anterior and posterior pituitary, pancreas and parathyroid hormones) stored in vesicles until needed
 - Steroids (adrenal cortex, ovarian and testicular hormones) diffuse across the cell membrane
 - Derivatives of amino acid tyrosine (thyroid hormones and catecholamines)

PEPTIDE (PROTEIN) HORMONES

 Synthesized as preprohormone → posttranslational modification to prohormone → then hormone

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

PEPTIDE (PROTEIN) HORMONES

• Example of protein hormone

Insulin

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

STEROID HORMONES

- Secreted by gonads, adrenals, placenta
- Derived from cholesterol (lipophilic)
 - Cross membranes (no storage)
- On-demand synthesis (SER)
- Usually Bound to Carrier proteins

AMINE HORMONES

- Oerived from tyrosine or tryptophan
- 3 groups
 - Tryptophan \Rightarrow Melatonin
 - Tyrosine ⇒ Catecholamines
 behave like peptide hormones
 - Tyrosine ⇒ Thyroid hormones behave like steroid hormones

TRANSPORT OF HORMONES

 Water soluble hormones- hydrophilic (peptides & catecholamines) dissolved in plasma

- Fat soluble hormones hydrophobic Steroids and thyroid hormones transported bound to plasma proteins (90%),
 - binding to proteins helps to
 - Provide reservoirs
 - Slow hormones clearance

DIFFERENCES BETWEEN WATER AND FAT SOLUBLE HORMONES

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cu

ummings.

MECHANISM OF ACTION OF HORMONES

Mechanism of action :

- 1. Hormone-receptor interaction (1st messenger)
- 2. Enzyme activation
- 3. Release of the second messenger
- 4. Effects on cellular function

HORMONES & RECEPTORS

• Receptors:

- Hormonal receptors are large proteins
- 2000-100,000 receptors/cell
- Receptors are highly specific for a single hormone

Receptor's Location:

- On the surface of cell membrane (proteins, peptides and catecholamines)
- In the cell cytoplasm (Steroids)
- In the cell nucleus (thyroid hormones)

MECHANISM OF ACTION (PEPTIDES AND PROTEIN HORMONES)

©Addison Wesley Longman, Inc.

SECOND MESSENGER (ADYNYLATE CYCLASE-CAMP)

SECOND MESSENGER (PHOSPHOLIPASE C-IP₃)

SECOND MESSENGER (CALCIUM-CALMODULIN COMPLEX)

© 2011 Pearson Education, Inc.

SECOND MESSENGER (TYROSINE KINASE SYSTEM)

- Is used by insulin & many growth factors to cause cellular effects
- Surface receptor is tyrosine kinase
 - Consists of 2 units that form active dimer when insulin binds

SECOND MESSENGER (TYROSINE KINASE SYSTEM)

- Activated tyrosine kinase phosphorylates signaling molecules
- Inducton of hormone/growth factor effects

MECHANISM OF ACTION (STEROID HORMONES)

REGULATION OF HORMONAL RECEPTORS

- Receptors does not remain constant
 - Inactivated or destroyed
 - Reactivated or manufactured
- Downregulation
 - Increase hormone concentration leads to decrease in the number of active receptors
 - Most peptide hormones have <u>pulsatile</u> <u>secretion</u> which prevents downregulation
- Upregulation
 - The hormone induces greater than normal formation of a receptor or intracellular signaling proteins

CLEARANCE OF HORMONES

Two factors control the concentration of a hormone in the blood:

- The rate of its secretion
- The rate of its removal (metabolic clearance)

• Hormones are cleared by:

- Metabolic destruction by tissues
- Binding with tissues
- Excretion by the liver into bile
- Excretion by the kidney into urine

 Clearance of protein bound hormones is slower than clearance of peptide hormones

HORMONE INTERACTIONS

- Multiple hormones can affect a single target simultaneously
- Three types of hormone interactions:
 - 1. Synergism
 - 2. Permissiveness
 - 3. Antagonism

What is Synergism? What is permissiveness? What is antagonism?

SYNERGISM

- Combined action of hormones is more than just additive!
- Example: Blood glucose levels & synergistic effects of glucagon, cortisol and epinephrine

PERMISSIVENESS

- One hormone allows another hormone to have its full effect
 - Especially during growth
- Example
 - Thyroid hormone have permissive effect on growth hormone action
 - Deficiency of thyroid hormone in infants leads to dwarfism.

ANTAGONISM

Antagonistic hormones have opposing physiological actions -

- Hormone B diminishes the effect of hormone A
- Example
 - Glucagon antagonizes the action of insulin
 - Can you mention another example?