
## THE THYROID GLAND

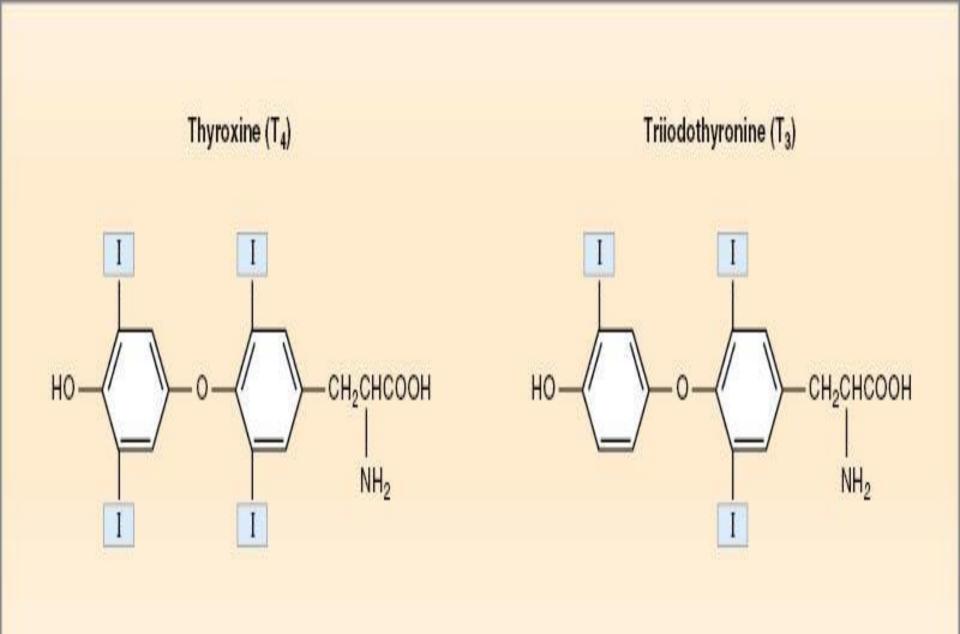
DR. Nervana Bayoumy



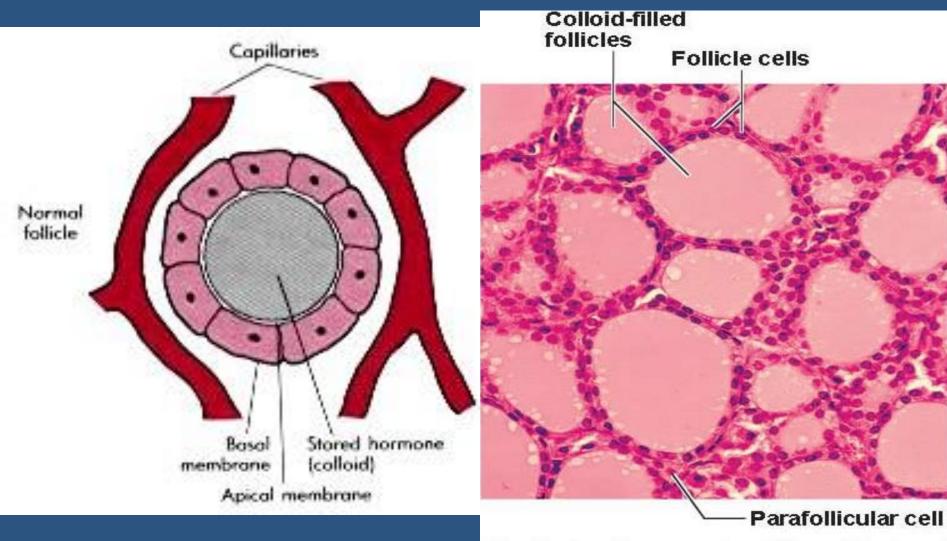
It is located below the larynx on either sides and anterior to the trachea.

The first recognized endocrine gland.

20g in adult.


### HORMONES

■ T4 (tetraiodothyronine) (thyroxine) 90%.


■ T3 (Triiodothyronine)10%.

Reverse T3

Calcitonin.



## **SYNTHESIS**



(b) Photomicrograph of thyroid gland follicles (125x)

## THREE UNIQUE FEATURES

1- Contains a large amount of iodine.

- supplied in diet.

- 1mg/week.

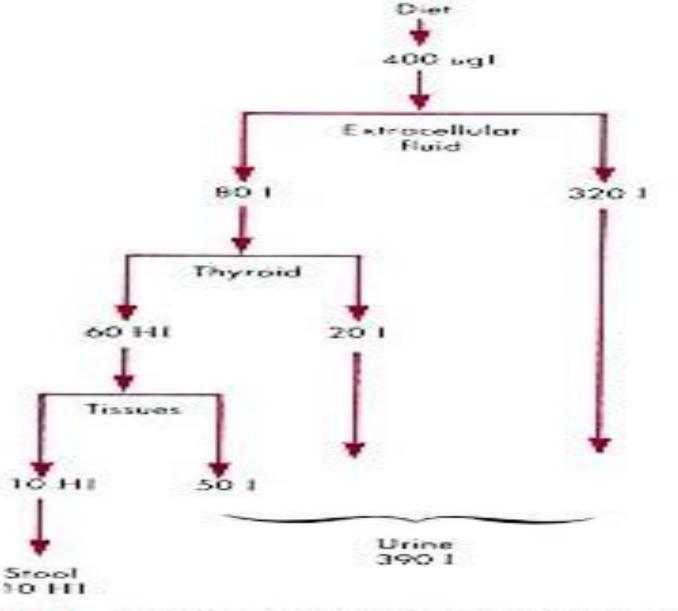
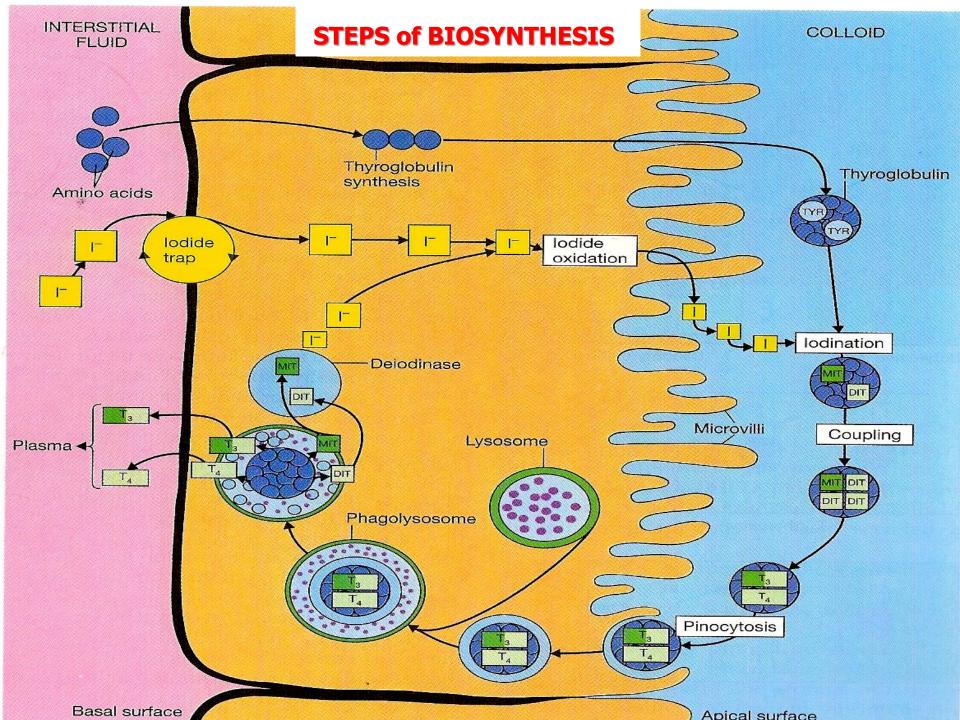




Fig. 49-2 Average daily inclide turnover in humans (United States). Note that 20% of the intake is taken up by the thyroid gland and 15% turns over in hormone synthesis and disposal. The unneeded excess is excreted in the urine. I, lo-dide; HI, hormonal indide.

## 2- Synthesis is partially intracellular and partially extracellular.

3- T4 is the major product.



#### **Thyroid Hormones** [T3 - T4]

**Biosynthesis**:

by the follicular cells

1- Iodide pump.

2- Thyroglobulin synthesis.

3- **Oxidation** of iodide to iodine.

4- Iodination of tyrosine, to form mono-iodotyrosine (MIT)

& di-iodotyrosine (DIT).

5- **Coupling**; MIT + DIT = **Tri-iodothyronine**, ( **T3**).

DIT + DIT = Tetra-iodothyronine, (T4)/ Thyroxine.

6- **Release**.

### STEPS IN BIOSYNTHESIS

# 1- THYROGLOBULIN FORMATION AND TRANSPORT:

- Glycoprotein.
- Tyrosine.
- Rough endoplasmic reticulum and Golgi apparatus.

### 2- IODIDE PUMP OR IODIDE TRAP:

- Active transport.

It is stimulated by TSH.

Wolff-chaikoff effect

(A reduction in thyroid hormone levels caused by administration of a large amount of iodine).

- Ratio of concentration from 30-250 times.

### 3- OXIDATION OF IODIDE TO IODINE:

- Thyroid peroxidase.

- It is located in or attached to the apical membrane.

### 4- ORGANIFICATION OF THYROGLOBULIN

Binding of iodine with thyroglobulin.

 Catalyzed by thyroid peroxidase, to form MIT/DIT

Remain attached to thyroglobulin until the gland stimulated to secret.

### 5- COUPLING REACTION:

- Catalyzed by thyroid peroxidase.

- It is stored as colloid.

- Is sufficient for 2-3 months.

$$I_2 + HO \longrightarrow CH_2 - CHNH_2 - COOH$$

$$Tyrosine$$

$$HO \longrightarrow CH_2 - CHNH_2 - COOH +$$

$$Monoiodotyrosine$$

$$HO \longrightarrow CH_2 - CHNH_2 - COOH$$

$$Diiodotyrosine$$

$$Monoiodotyrosine + Diiodotyrosine \longrightarrow$$

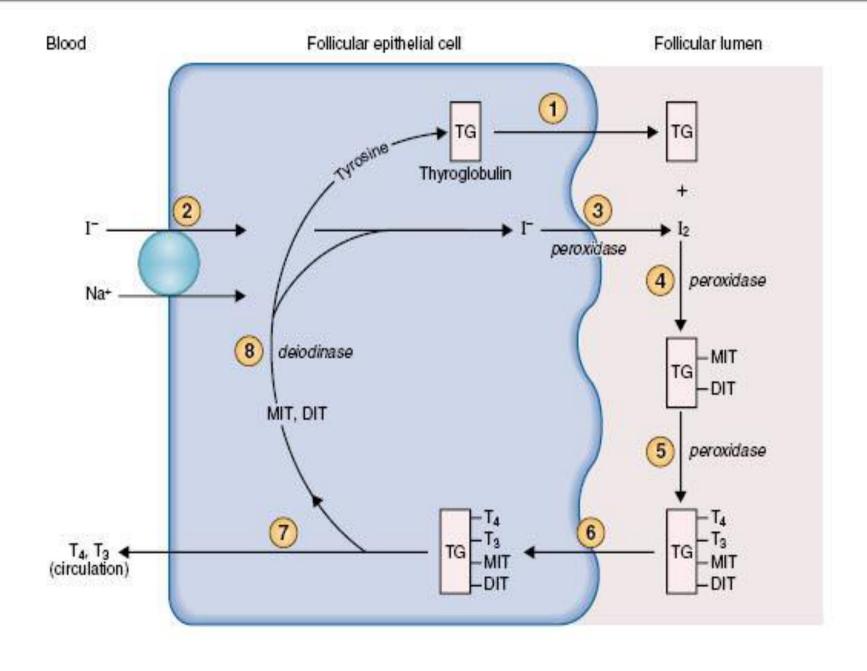
$$HO \longrightarrow CH_2 - CHNH_2 - COOH$$

$$3,5,3'-Triiodothyronine$$

$$Diiodotyrosine + Diiodotyrosine \longrightarrow$$

$$HO \longrightarrow CH_2 - CHNH_2 - COOH$$

$$Thyroxine$$


6- Endocytosis of thyroglobulin.

7- Fusion of lysosomes immediately with the vesicles.

8- Hydrolysis of the peptide bond to release *DIT+MIT+T4+T*3 from the thyroglobulin.

9- Delivery of T4 and T3 to the systemic circulation.

10- Deiodination of DIT and MIT by thyroid deiodinase (recycling).



| Event                                                                                                   | Site                      | Enzyme     | Inhibitor                |
|---------------------------------------------------------------------------------------------------------|---------------------------|------------|--------------------------|
| Synthesis of TG; extrusion into follicular lumen                                                        | Rough ER, Golgi apparatus |            |                          |
| 2 Na+ - I <sup>-</sup> cotransport                                                                      | Basal membrane            |            | Perchlorate, thiocyanate |
| Oxidation of I <sup>-</sup> → I <sub>2</sub>                                                            | Apical (luminal) membrane | Peroxidase | PTU                      |
| 4 Organification of I <sub>2</sub> into MIT and DIT                                                     | Apical membrane           | Peroxidase | PTU                      |
| Coupling reaction of MIT and DIT into T <sub>3</sub> and T <sub>4</sub>                                 | Apical membrane           | Peroxidase | PTU                      |
| 6 Endocytosis of TG                                                                                     | Apical membrane           |            |                          |
| 7 Hydrolysis of T <sub>4</sub> and T <sub>2</sub> ; T <sub>4</sub> and T <sub>3</sub> enter circulation | Lysosomes                 | Proteases  |                          |
| Deiodination of residual MIT and DIT     Recycling of I <sup>-</sup> and tyrosine                       | Intracellular             | Deiodinase |                          |

# THYROID HORMONES IN THE CIRCULATION

#### 1- Bound:

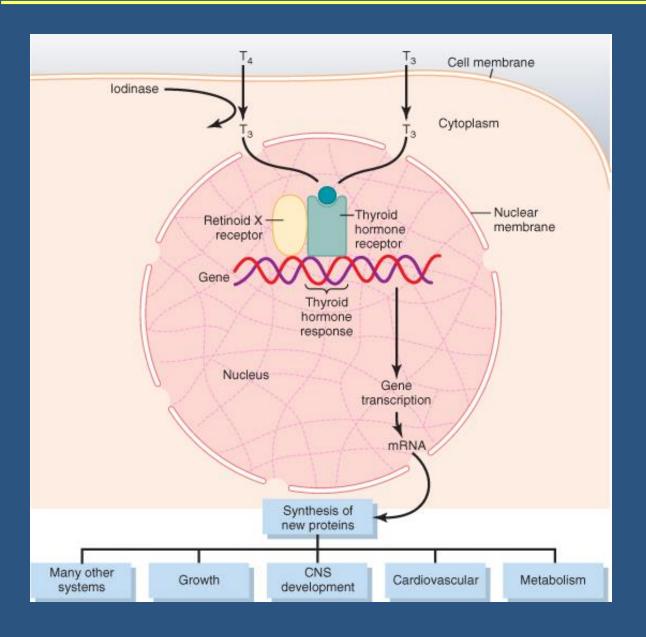
70-80% bound to thyroxine-binding globulin (TBG) synthesized in the liver.

The reminder is bound to albumin.

### 2- <u>Unbound</u> (Free):

0.03% of T<sub>4</sub>

0.3% of T<sub>3.</sub>


### In hepatic failure:

↓ TBG → ↑ free T3/T4 → inhibition of thyroid secretion.

### In pregnancy:

† estrogen  $\rightarrow \uparrow$  TBG  $\rightarrow \downarrow$  freeT3/T4  $\rightarrow$  *stimulation* of thyroid secretion.

#### **RELEASE OF T4 AND T3 TO THE TISSUES**



# RELEASE OF T4 AND T3 TO THE TISSUES

- 1. The release is slow because of the high affinity of the plasma binding proteins.
  - ½ of T4 in the blood is released every 6 days.
  - ½ of T3 in the blood is released every one day.

2- T4 & T3 readily diffuse through the cell membrane.

3- Stored in the targeted tissues (days to weeks).

5- Most of T4 is deionized to T3 by iodinase enzyme.

6- In the nucleus, T3 mainly binds to "thyroid hormone receptor" and influence transcription of genes.

### **ACTION OF THYROID HORMONES**

- Before binding to the nuclear receptors 90% of T4 is converted to T3.

[T3 + nuclear receptor → activation of thyroid regulating element on DNA → ↑ DNA transcription formation of mRNA → translation of mRNA specific *protein synthesis* → (target tissue specific)]

#### **ACTION OF THYROID HORMONES cont.**

### 1- Basal Metabolic Rate (BMR):

- Is the energy requirement under basal condition (mental and physical rest 12-18 hours after a meal).
- Complete lake of thyroid hormones → 40-50%; in BMR.
- Extreme increase of thyroid hormones → 60-100% <sup>†</sup> in BMR.

### 2- Metabolism

### A) Effect on carbohydrate metabolism:

- 1- increase glucose uptake by the cells.
- 2- increase glycogenolysis.
- 3- increase gluconeogenesis.
- 4- increase absorption from the GIT.

### B) Effects on fat metabolism:

- 1- increase lipolysis.
- 2- decrease plasma cholesterol by increase loss in feces.
- 3- increase oxidation of free fatty acids.

### C) Effect on protein metabolism:

overall effect is *catabolic* leading to decrease in muscle mass.

## The metabolic effects are due to the induction of <u>metabolic enzymes</u>:

- 1- cytochrome oxidase.
- 2- NAPDH cytochrome C reductase.
- 3- alpha- glycerophosphate dehydrogenase.
- 4- malic enzymes.
- 5- several proteolytic enzymes

# 3- Effects on the Cardiovascular system:

- increase heart rate. —
- increase stroke volume.

- Cardiac output up to 60%
- decrease peripheral resistance.

\*end result is increase delivery of oxygenated blood to the tissues.

#### The cardiovascular effects are due to:

1- Thyroid hormones potentiate the effect of <u>catecholamine</u> in the circulation  $\rightarrow$  activation of  $\beta$ -adrenergic receptors.

- 2- Direct induction of:
  - a) myocardial β-adrenergic receptors.
  - b) sarcoplasmic reticulum.
  - c) Ca<sup>+2</sup> ATPase.
  - d) myosine.

### 6- Effects on the CNS:

### A) Peri-natal period:

Thyroid hormones are essential for <u>maturation</u> of the CNS.

decrease of hormones secretion

irreversible mental retardation

Screening is necessary to introduce hormone replacement.

#### 6- Effects on the CNS: cont.

### B) In adult:

**Increase** in thyroid hormone secretion:

- 1-hyperexcitability.
- 2- irritability.

**Decrease** in thyroid hormones secretion:

- 1- slow movement.
- 2- impaired memory.
- 3- mental capacity.

### 7- Effects on bone:

- a) promote bone formation.
- b) promote ossification.
- c) promote fusion of bone plate.
- d) promote bone maturation.

# 8- Effects on Respiration:

**1-** increase ventilation rate.

2- increase dissociation of oxygen from Hb by increasing RBC 2,3-DPG (2,3 diphosphoglycerate).

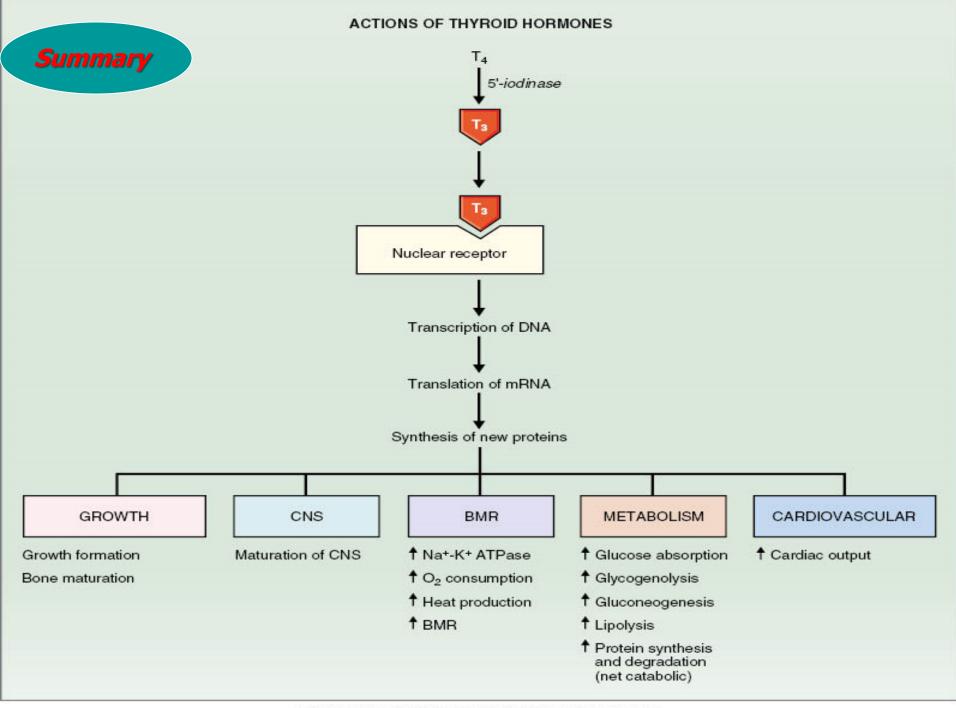
# 9- Effects on the GIT:

1- increase <u>appetite</u> and food intake.

2- increase of digestive juices <u>secretion</u>.

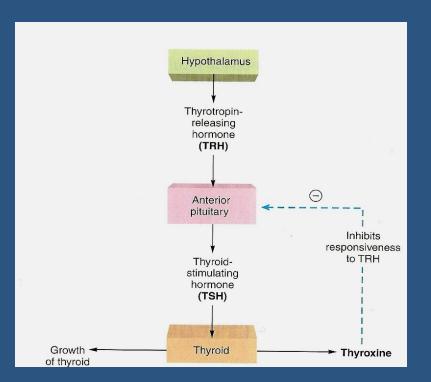
3- increase of G.I tract <u>motility</u>.

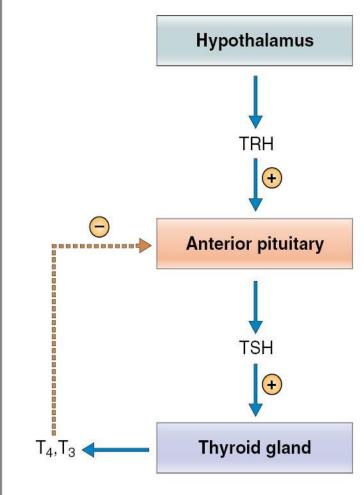
excess secretion — diarrhea.

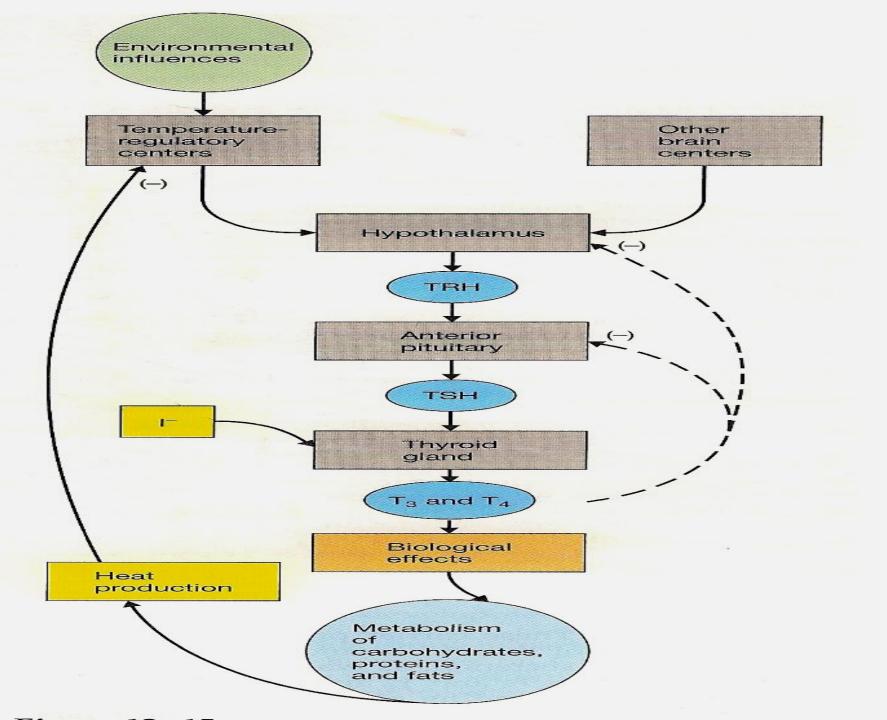

lake of secretion — constipation.

# 10- Effects on Autonomic nervous system:

Produced the same action as <u>catecholamines</u> via β-adrenergic receptors including:


- a) increase BMR.
- b) increase heat production.
- c) increase heart rate.
- d) increase stroke volume.


i.e. β-blocker (propranolol) is used in treatment of hyperthyroidism.




# REGULATION OF HORMONES SECRETION

It is regulated by the hypothalamic-pituitary axis.







# 1- Thyrotropin-releasing hormone (TRH):

- -Tripeptide.
- Paraventricular nuclei of the hypothalamus.
- Act on the thyrotrophs of the anterior pituitary
- Transcription and secretion of TSH.
- Phospholipid second messenger system.

# 2- Thyroid-stimulating hormone (TSH):

- Glycoprotein.

- Anterior pituitary.

 Regulate metabolism, secretion and growth of thyroid gland (trophic effect).

#### **Action of TSH**

- 1- Increase proteolysis of the thyroglobulin.
- 2- Increase pump activity.

- 3- Increase iodination of tyrosine.
- 4- Increase coupling reaction.
- 5- Trophic effect.

- TSH secretion started at 11-12 of gestational weeks.

- TSH + receptor → activation of adenylyl cyclase via Gs protein → <sup>†</sup>cAMP → <sup>†</sup>activation of protein kinase → multiple phosphorylation → secretion and thyroid growth.

# Table 9-8 Factors Affecting Thyroid Hormone

Secretion

| TSH I deficiency Thyroid-stimulating immunoglobulins Increased TBG levels (e.g., pregnancy)  Thyroid-stimulating Deiodinase deficiency Excessive I intake (Wolff-Chaikoff effect) Perchlorate; thiocyanate (inhibit Na+I cotransport) |                                                          |                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Thyroid-stimulating Deiodinase deficiency immunoglobulins Excessive I <sup>-</sup> intake (Wolff- Chaikoff effect)  (e.g., pregnancy) Perchlorate; thiocyanate (inhibit)                                                              | Stimulatory Factors                                      | Inhibitory Factors                                                                                      |
| I.u I continoporty                                                                                                                                                                                                                    | Thyroid-stimulating immunoglobulins Increased TBG levels | I <sup>-</sup> deficiency Deiodinase deficiency Excessive I <sup>-</sup> intake (Wolff-Chaikoff effect) |
| Propylthiouracil (inhibits peroxidase enzyme)                                                                                                                                                                                         |                                                          |                                                                                                         |
| Decreased TBG levels (e.g., liver disease)                                                                                                                                                                                            |                                                          | Decreased TBG levels (e.g., liver disease)                                                              |

# DISEASES OF THE THYROID GLAND

DR ABDULMAJEED AL-DREES

# **HYPERTHYROIDISM**

- Over activity of the thyroid gland.

- Women: men ratio (8:1).

- activity of gland:
  - a)- 5- 10 times increase in secretion.
  - b)- 2-3 times increase in size.

# **CAUSES**

#### 1- Graves' disease:

- an autoimmune disorder.
- increased circulating level of thyroidstimulating immunoglobulins (TSI).
- 95%.

- 4 – 8 times more common in women than men.

#### 2- Thyroid gland tumor:

- 95% is benign.
- 5% is malignant.
- history of head and neck irradiation and family history.

#### 3- Exogenous T3 and T4:

( rarely cause)

#### 4- Excess TSH secretion:

- diseases of the hypothalamus ( TRH).

- diseases of the pituitary (TSH).

# **DIAGNOSIS**

Symptoms:

1- Goiter in 95%.

#### 2- skin:

- smooth, warm and moist.
- heat intolerance, night sweating.

#### 3- musculo skeletal:

-Muscle atrophy.

#### 4- Neurological:

- tremor.
- enhanced reflexes.
- irritability.

#### **5- Cardiovascular:**

- increase heart rate.
- increase stroke volume.
- arrhythmias.
- hypertension.

#### 6- G.I tract:

- weight loss.
- diarrhea.

#### 7- Renal function:

- † glomerular filtration rate.

## 8- Exophthalmos:

- anxious staring expression.
- protrusion of eye balls.

#### 9- Others:

- menstrual cycle disturbance.





#### INVESTIGATIONS

1- Serum T3, T4 measurement.

In primary hyperthyroidism: high T3, T4 and low TSH.

In secondary hyperthyroidism: high T3, T4 and high TSH.

#### **TREATMENT**

## 1- Medical therapy:

e.g. propylthiourcal

- usually for 12-18 months course.
- with 3-4 monthly monitoring.

## 2- Surgery:

- Subtotal thyroidectomy.

## - Indication for surgery:

- a)- Relapse after medical treatment.
- b)- Drug intolerance.
- c)- Cosmetic.
- d)- Suspected malignancy.

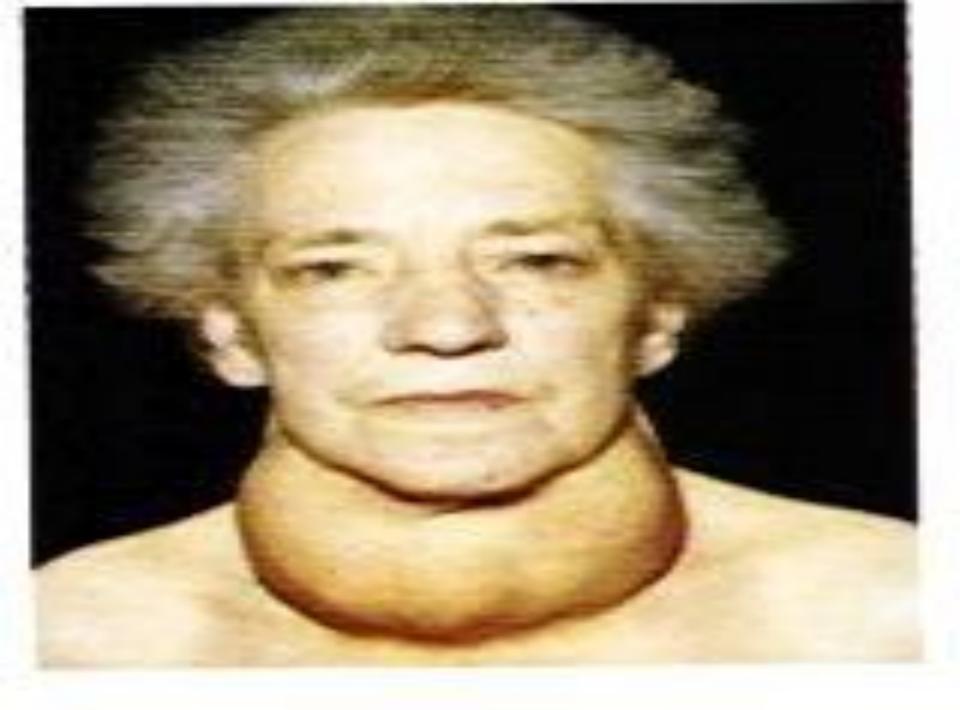
# **HYPOTHYROIDISM**

Under activity of the thyroid gland

more in woman (30-60 years).

# CAUSES

# 1- inherited abnormalities of thyroid hormone synthesis:


- peroxidase defect.
- Iodide trapping defect.
- thyroglobulin defect.

#### 2- Endemic Colloid Goiter:

- before table salt.

```
tiodide ____thormone formation ___tTSH

↑ Thyroglobulin ____tsize ( > 10 times)
```



## 3- Idiopathic Nontoxic Colloid Goiter:

- I in take is normal.
- thyroiditis?

inflammation → †cell damage — → †hormone secretion † TSH — → †of activity of normal cells — → †size 4- Gland destruction (surgery).

5- Pituitary diseases or tumor.

6- Hypothalamus diseases or tumor.

#### **DIAGNOSIS**

#### 1- skin:

- dry skin.
- cold intolerance.

#### 2- Musculo skeletal:

- † muscle bulk.
- ↓ in skeletal growth.
- muscle sluggishness
- slow relaxation after contraction.

#### 3- Neurological:

- slow movement.
- impaired memory.
- decrease mental capacity.

#### 4- Cardiovascular:

- blood volume.
- heart rate
- -↓ stroke volume.

#### 5- G.I tract:

- constipation
- increase weight.

#### 6- Renal function:

- decrease glomerular filtration rate.

#### 7- Myxoedema:

An edematous appearance through out body.

#### 8- others:

- loss of libido.
- menstrual cycle disturbance.



#### INVESTIGATIONS

1- Serum T3,T4 are low.

- TSH is elevated in primary.

- TSH is low in secondary hypothyroidism.

#### **TREATMENT**

- L- thyroxine
- Starting dose is 25-50 μg.
- Increase to 200 µg.
- At 2-4 weeks period.

The first response seen is the weight loss.



|            | Hyperthyroidism                                                                                                                                                                                            | Hypothyroidism                                                                                                                                                                                                                                                        |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symptoms   | Increased basal metabolic rate Weight loss Negative nitrogen balance Increased heat production Sweating Increased cardiac output Dyspnea (shortness of breath) Tremor, muscle weakness Exophthalmos Goiter | Decreased basal metabolic rate Weight gain Positive nitrogen balance Decreased heat production Cold sensitivity Decreased cardiac output Hypoventilation Lethargy, mental slowness Drooping eyelids Myxedema Growth retardation Mental retardation (perinatal) Goiter |
| Causes     | Graves' disease (increased thyroid-stimulating immunoglobulins) Thyroid neoplasm Excess TSH secretion Exogenous T <sub>3</sub> or T <sub>4</sub> (factitious)                                              | Thyroiditis (autoimmune or Hashimoto's thyroiditis) Surgery for hyperthyroidism I <sup>-</sup> deficiency Congenital (cretinism) Decreased TRH or TSH                                                                                                                 |
| TSH Levels | Decreased (feedback inhibition of T <sub>3</sub> on the anterior lobe) Increased (if defect is in anterior pituitary)                                                                                      | Increased (by negative feedback if primary defect is in<br>thyroid gland)<br>Decreased (if defect is in hypothalamus or anterior                                                                                                                                      |

#### thyroid hormone synthesis) Thyroidectomy <sup>131</sup>I<sup>-</sup> (destroys thyroid) β-Adrenergic blocking agents (adjunct therapy) Copyright @ 2010 by Saunders, an imprint of Elsevier Inc. All rights reserved.

Propylthiouracil (inhibits peroxidase enzyme and

Table 9-9 Pathophysiology of Thyroid Hormones

Treatment

Thyroid hormone replacement therapy

pituitary)

# **CRETINISM**

Extreme hypothyroidism during infancy and child hood (failure of growth).

#### **CAUSES**

1- Congenital lake of thyroid gland (congenital cretinism).

2- Genetic deficiency leading to failure to produce hormone.

3- Iodine lake in the diet (endemic cretinism).

#### **SYMPTOMS**

- 1- Infant is normal at birth but abnormality appears within weeks.
- 2- Protruding tongue.
- 3- Dwarf with short limbs.
- 4- Mental retardation.
- 5- Often umbilical hernia.
- 6- teeth.



# TREATMENT

Changes are irreversible unless treatment is given early.





# Calculate your BMR:

**Men**: BMR = 66 + (13.7 X wt in kg) + (5 X ht in cm) - (6.8 X age in years)

**Women**: BMR = 655 + (9.6 X wt in kg) + (1.8 X ht in cm) - (4.7 X age in years)

#### **Example:**

You are female You are 30 years old You are 5' 6 " tall (167.6 cm) You weigh 120 lbs. (54.5 kilos) Your BMR = 655 + 523 + 302 - 141 = **1339 calories/day**