Endocrine block 2017

Anterior Pituitary Disorders

MUHAMMAD MUJAMMAMI, MD, MSc (MM), CCD, ECNU

SB-Med, JBIM, ABIM, SF-Endo, McGill Cert. Endo, McGill Cert. Endo Tumors

Consultant in Medicine, Endocrinology, Diabetes & Thyroid & Endocrine Oncology King Saud University

Endocrine system

Pituitary Gland

Pituitary Development

ANTERIOR PITUITARY

- Rathke's pouch,
 <u>Ectodermal</u> evagination of oropharynx
- Synthesis and secrete
 - (GH,LH,FSH,PRL,TSH,ACTH)
- recognizable by 4- 5th wk of gestation and full maturation by 20th wk
- Portion of Rathke's pouch →→
 Intermediate lobe
- Remnant of Rathke's pouch cell in oral cavity →→ pharyngeal pituitary

POSTERIOR PITUITARY (NEUROHYPOPHYSIS)

 <u>neural cells</u> as an outpouching from the floor of 3rd ventricle

Only storage:

 Oxyctocin, ADH (hypothalamic hormones)

Sella turcica

- Lies at the base of the skull
- Roof: diaphragma sellae

- Floor: Sphenoid sinus
- Lateral walls: cavernous sinus
 - containing III, IV, VI, V1, V2 cranial nerves and internal carotid artery with sympathetic fibers.
 - Both adjacent to temporal lobes

Pituitary Development

- Pituitary stalk in midline joins the pituitary gland with hypothalamus that is below 3rd ventricle
- Development of pituitary cells is controlled by a set of transcription growth factors like
 - Pit-1, Prop-1, Pitx2

Pituitary Development

Pituitary gland measures

- 15 X 10 X 6 mm, weighs 500 mg but about 1 g in women
- Optic chiasm
 - lies 10 mm above the gland and anterior to the stalk
- Blood supply :
 - superior, middle, inferior hypophysial arteries (internal carotid artery) running in median eminence from hypothalamus
- Venous drainage:
 - to superior and inferior petrosal sinsuses to jugular vein

Normal Pituitary Anatomy

Pituitary Disorders

Anterior pituitary disorders

Posterior Pituitary disorders

Anterior Pituitary Disorders

Function :

- Hypersecretion: (GH,LH,FSH,PRL,TSH,ACTH)
- Hyposecretion: hypopituitarism (isolated, multiple, pan)

Masses

- Functioning = Hypersecretion
- Non- Functioning
- With /without mass-effect:
 - Space occupying lesion (compression symptoms, hypopituitarism)

Posterior Pituitary disorders

Diabetes insipidus

Anterior Pituitary Function

	Somatotroph	Gonadotroph	Lactotroph	Thyrotroph	Corticotroph	
Stimulators	GHRH GHS	GnRH E2	TRH, E2	TRH	CRH AVP gp-130 cytokines	
Inhibitors	IGF-1 Somatostatin Activins	Testosterone, E2 inhibin		T3, T4 Dopamine Somatostatin GH	Steroid	
Hormone	GH	LH,FSH	PRL	TSH	АСТН,РОМС	
Target Gland	Liver & other tissues	Ovary, Testes	Breast & other tissues	Thyroid	Adrenals	•
Target Hormone	IGF-1	Testosterone, E2		Τ4	cortisol	
Trophic Effects	IGF-1 production,	Sex Steroid Follicular	Milk Production	T4 synthesis and secretion	Steroid production	

Pituitary Function

Anterior Pituitary Hormones

- Go Look For The Adenoma Please
- GH, LH, FSH, TSH, ACTH, Prolactin
- A compressive adenoma in pituitary will impair hormone production in this order

Posterior Pituitary Hormones

- Oxytocin
- ADH(vasopressin)
- Remember (storage not synthesis)

Etiology of Pituitary Masses

Anterior Pituitary Disorders

Function :

- Hypersecretion: (GH,LH,FSH,PRL,TSH,ACTH)
- Hyposecretion: hypopituitarism (isolated, multiple, pan)

Masses

- Functioning = Hypersecretion
- Non- Functioning
- With /without mass-effect:
 - Space occupying lesion (compression symptoms, hypopituitarism)

Etiology of Pituitary-Hypothalamic Lesions

Non-Functioning Pituitary Adenomas

- Endocrine active pituitary adenomas
 - Prolactinoma (PRL-oma)
 - Somatotropinoma (GH secreting adenoma, Acromegaly)
 - Corticotropinoma (ACTH secreting adenoma, Cushing's disease)
 - Thyrotropinoma (TSH-oma, rare)
 - Other mixed endocrine active adénomas
- Malignant pituitary tumors: Functional and non-functional pituitary carcinoma
- Metastases in the pituitary (breast, lung, stomach, kidney)
- **Pituitary cysts:** Rathke's cleft cyst, Mucocoeles, Others
- Empty sella syndrome
- Pituitary abscess
- Lymphocytic hypophysitis
- Carotid aneursym

Anterior Pituitary Disorders

Function :

- Hypersecretion: (GH,LH,FSH,PRL,TSH,ACTH)
- Hyposecretion: hypopituitarism (isolated, multiple, pan)

Masses

- Functioning = Hypersecretion
- Non- Functioning
- With /without mass-effect:
 - Space occupying lesion (compression symptoms, hypopituitarism)

Disorders of Pituitary Function

Hypopituitarism

- Central hypoadrenalism, hypogonadism, hypothyroidism or GH deficiency
- Panhypopituitarism

Hypersecretion of Pituitary Hormones

- Hyperprolactinemia
- Acromegaly
- Cushing's Disease

Evaluation of Pituitary mass

- Pituitary adenoma:
 - 10 % of all pituitary lesions
 - Genetic-related
 - MEN-1, Gs-alpha mutation, PTTG gene, FGF receptor-4
- Pituitary incidentaloma:
 - 1.5 -31 % in autopsy (prevalence)
 - 10% by MRI most of them < 1 cm</p>

Evaluation of Pituitary lesion

ANESTH ANALG 2005;101:1170-81

REVIEW ARTICLE NEMERGUT ET AL. 1171 TRANSSPHENOIDAL PITUITARY SURGERY

Clinical disease	Hormone produced by tumor	Estimated frequency (%)	Medical therapy
Acromegaly	Growth hormone	5–10	Somatostatin analog (octreotide) Growth hormone receptor blocker
Cushing's disease	ACTH	10-15	Ketoconazole (blocks cortisol synthesis)
Gonadotroph	FSH, LH	5	None
Prolactinoma	Prolactin	20–30	Dopamine agonist (bromocriptine, cabergoline, pergolide)
Null cell	None	20-25	None
Thyrotropic	TSH	<3	Somatostatin analog (octreotide) Propylthiouracil
Other (including mixed cell adenomas)	None	20	None

Table 1. Functioning Adenomas: Clinical Disease and Medical Therapy

ACTH = adrenocorticotropic hormone, FHS = follicle-stimulating hormone, LH = luteinizing hormone, TSH = thyroid-stimulating hormone.

Evaluation of Pituitary lesion

• C: Clinical (History and Examination)

- function (oversection or hyposecretion)
- Mass (headache, visual symptoms)

B: Biochemical

- Screen Test
- Confirmatory Test

A: Anatomical

- MRI of sella turcica
- Then treatment:
 - Surgical Medical Radiation
 - Medical Surgical Radiation

Non-functional pituitary adenoma

C: Clinical	Asymptomtic , incidentaloma by imaging Mass-effect (mechanical pressure, hypopituitarism, visual (bitemproal hemianopia) Gonadal hypersecretion
B: Biochemical	GH,LH,FSH,TSH,ACTH: not high PRL : low ,high, normal
A: Anatomical	MRI
Treatment	Surgery if indicated Observation Adjunctive therapy: - Radiation therapy - Dopamine agonist - Somatostatin analogue

Non-functional pituitary adenoma

Y. Greenman, N. Stern / Best Practice & Research Clinical Endocrinology & Metabolism 23 (2009) 625–638

627

Table 2

Clinical characteristics of NFPA patients.

	Nomikos et al ¹⁵	Losa et al ¹⁶	Chang et al ¹⁷	Ferrante et al ⁵¹	Total
Number of patients	721	491	663	295	2170
Mean age	54.2 ± 19	-	53 (median)	$\textbf{50.4} \pm \textbf{14.1}$	
Gender (M/F)	401/320	276/215	394/269	161/134	1232/938 (56.7% M)
Incidental finding	57 (7.9%)	57 (11.6%)	49 (7.4%)	_	163/1875 (8.7%)
Headaches	70 (9.7%)	-	212 (32%)	122 (41.4%)	404/1679 (24%)
Visual deficits	222 (30.8%)	287/486 (59.1%)	327 (49%)	200 (67.8%)	1036/2170 (47.7%)
Pressure on cranial nerves	_	22 (4.5%)	26 (3.9%)	-	48/1154 (4.2%)
Apoplexy	27 (3.7%)	48 (9.8%)	24 (3.6%)	-	99/1875 (5.3%)
Symptoms of Hypopituitarism	345 (47.8%)	-	342 (51.6%)	118 (40%)	805/1679 (48%)
Documented					
Hypopituitarism	614 (85%)		-	183 (62%)	797/1016 (78.4%)
Hypogonadism	512/659 (77.7%)	335/474 (70.7%)		128 (43.3%)	975/1261 (77.3%)
Hypoadrenalism	230 (31.9%)	115/478 (24.1%)		77 (26.2%)	422/1494 (28.2%)
Hypothyroidism	129/658 (19.6%)	116/462 (25.1%)		72 (24.5%)	317/1415 (22.4%)
Hyperprolactinemia	199 (27.6%)	251/462 (54.3%)	-	82 (27.6%)	532/1478 (35.9%)

Functional pituitary mass

Prolactin

Prolactin - Low

 No clinical significant if there is no mass invading the hypothalamus.

- N.B. :
 - PRL is the only pituitary hormone that is inhibited by hypothalamus.

Prolactinoma (Mass + high level)

Prolactinomas

C: Clinical	oligomenorrhea, amenorrhea or infertility Galactorrhea Mass-effect (mechanical pressure, hypopituitarism) Sexual dysfunction (in male) asleep, stress, pregnancy, lactation and chest wall stimulation or trauma, Renal failure, Liver failure medication O/E: Visual field defect (Bitemporal hemianopia) Nipple discharge
B: Biochemical	GH,LH,FSH,TSH,ACTH: normal or low PRL : High TSH: R/O Hypothyroidism(primary) IGF-1: R/O acromegaly co-secrtion
A: Anatomical	MRI
Treatment	Medical – Medical – Medical (Dopamine agonist) Surgical- Radiation

Prolactinomas

- Most common of functional pituitary adenomas
- 25-30% of all pituitary adenomas
- Some growth hormone (GH)–producing tumors also co-secrete PRL
- Prolactinomas women:
 - 90% present with <u>microprolactinomas</u>
- Prolactinomas in **men** :
 - 60% present with macroprolactinomas

Growth hormone disorder

Growth hormone deficiency

- Isolated, pan hypopituitarism
- Pituitary tumor as mass effect →→ Growth hormone deficiency

- Disease :
 - Children: Short stature
 - Adult: ??

Growth hormone deficiency

Diagnosis in children and adult

Growth hormone deficiency

C: Clinical	Function : Short stature Mass-effect (mechanical pressure, hypopituitarism)		
B: Biochemical	Pituitary Function (LH,FSH.PRL, TSH, ACTH, cortisol,testesterone, T4) Screen: IGF-1 Dynamic testing: clonidine stimulation test glucagon stimulation exercise testing, arginine-GHRH insulin tolerance testing		
A: Anatomical	X-ray of hands: delayed bone age MRI		
Treatment	GH replacement		

Acromegaly

Growth hormone - Acromegaly

Growth hormone - Acromegaly

Table 1. Clinical Features of Acromegaly.

Local tumor effects	Visceromegaly		
Pituitary enlargement	Tongue		
Visual-field defects	Thyroid gland		
Cranial-nerve palsy	Salivary glands		
Headache	Liver		
Somatic systems	Spleen		
Acral enlargement, including thickness of soft tissue	Kidney		
of hands and feet	Prostate		
Musculoskeletal system	Endocrine and metabolic systems		
Gigantism	Reproduction		
Prognathism	Menstrual abnormalities		
Jaw malocclusion	Galactorrhea		
Arthralgias and arthritis	Decreased libido, impotence, low levels of sex hormone-		
Carpal tunnel syndrome	binding globulin		
Acroparesthesia	Multiple endocrine neoplasia type 1		
Proximal myopathy	Hyperparathyroidism		
Hypertrophy of frontal bones	Pancreatic islet-cell tumors		
Skin and gastrointestinal system	Carbohydrate		
Hyperhidrosis	Impaired glucose tolerance		
Oily texture	Insulin resistance and hyperinsulinemia		
Skin tags	Diabetes mellitus		
Colon polyps	Lipid		
Cardiovascular system	Hypertriglyceridemia		
Left ventricular hypertrophy	Mineral		
Asymmetric septal hypertrophy	Hypercalciuria, increased levels of 25-hydroxyvitamin D_3		
Cardiomyopathy	Urinary hydroxyproline		
Hypertension	Electrolyte		
Congestive heart failure	Low renin levels		
Pulmonary system	Increased aldosterone levels		
Sleep disturbances	Thyroid		
Sleep apnea (central and obstructive)	Low thyroxine-binding–globulin levels		
Narcolepsy	Goiter		

Acromegaly

C: Clinical	 Function : Sweating, Enlargement (acral, face gross features, heart, tongue Jaw, gigantism in children , Galactorrhea Mass-effect (mechanical pressure, hypopituitarism) <i>HTN,CHF, OSA, constipation</i> O/E: Visual field defect (Bitemporal hemianopia) Gross features of Acromegaly
B: Biochemical	Pituitary Function (LH,FSH.PRL, TSH, ACTH, cortisol,testesterone, T4) Screen: IGF-1 Confirmatory Test : 75 g OGTT tolerance test for GH suppression Fasting and random blood sugar, HbA1c Lipid profile
A: Anatomical	MRI Echo: Cardiac disease is a major cause of morbidity and mortality 50 % died before age of 50 HTN in 40%, LVH in 50%, Diastolic dysfunction as an early sign of cardiomyopathy
Treatment	Surgical – Medical (Somatostatin analogue)- Radiation

ACTH-disorders

HPA-axis

Circadian rhythm of cortisol secretion
 Early morning cortisol between 8-9 am

ACTH-disorders

HealAll.info/hypertension

Cortisol low (Hypoadrenalism)

- Nausea, Vomiting, abdominal pain, Diarrhea
- Dizziness and weakness, Tiredness, Muscle ache
- Hypotension
- Weight loss

Management of hypoadrenalism

Cortisol replacement

HPA-axis (excessive cortisol)

ACTH-Adenoma

excessive cortisol (Cushing's) Hirsutism in women

excessive cortisol (Cushing's) Stria (purple, wide >1cm)

HIV Web Study (www.HIV/webstudy.org)

Supported by MRSA

excessive cortisol (Cushing's)

excessive cortisol (Cushing's) ecchymosis

HPA-axis (excessive cortisol)

- 80 % HTN
- LVH
- Diastolic dysfunction, intraventricular septal hypertrophy
- ECG needed: high QRS voltage, inverted T-wave
- Echocardiogram preop
- OSA: 33% mild, 18% severe. Needs respiratory assessment and careful use of sedative during surgery
- Glucose intolerance in 60%, control of hyperglycemia
- Osteoporosis with vertebral fracture→→ positioning of patient in OR (50 %), 20 % with fracture
- thin skin $\rightarrow \rightarrow$ difficult IV cannulation, poor wound healing

Cushing's (excessive cortisol)

C: Clinical	Function : Hirsutism, acne, easily bur DM,HTN, irregular period, proximal weakness, recurrent infections, depression O/E: hirsutism, acne, moon face, central obesity, stria, proximal weakness, supraclavicular fat pad,
B: Biochemical	High cortisol , high ACH 24hrs for UFC 1MG DST Midnight salivary cortisol
A: Anatomical	MRI
Treatment	Surgical – Medical - Radiation

TSH-Hypothyroid

Central Hypothyroidism

Low TSH

Low free T₄ and T₃

Signs and Symptoms of HYPOTHYROIDISM

Central Hypothyroidism

C: Clinical	Function : fatigue, weight gain, irregular menses, dry skin, depression, cold intolerance, increase sleep, slow thinking O/E: obesity, ? Depressed face, eye brow
B: Biochemical	Low T4 , Low TSH
A: Anatomical	MRI
Treatment	Thyroxine replacement Surgical removal of pituitary adenoma if large

TSH-hyperthyroid

TSH-Producing adenoma

- Very rare < 2.8 %</p>
- Signs of hyperthyroidism
- High TSH, FT4, FT3
- Treatment preop with anti-thyroid meds
- Surgical resection of adenoma
- Medical therapy: Somatostatin Analogue

Gonadotroph adenoma vs. menopause and ovarian failure

High FSH with low LH
High serum free alpha subunit
High estridiol, FSH, thickened endometrium and polycystic ovaries

Gonadotroph Adenoma

Surgical resection if largeRadiation therapy

assessment of pituitary function

- Baseline: TSH, FT4, FT3, LH, FSH, Prolactin, GH, IGF-I,Testosterone, Estradiol
- MRI brain
- Neuropthalmic evaluation of visual field
- Cardiac and respiratory assessment
- Anesthesiologist for airway and perioperative monitoring
- Neurosurgeon
- ENT for Endonasal evaluation for surgical approach
- Preop hormonal replacement: all pituitary adenoma should be covered with stress dose of HC