Causes of Hypocalcaemia

Hypoparathyroid	Nonparathyroid	PTH Resistance
Postoperative	Vitamin D deficiency	Pseudo- hypoparathyroidism
Idiopathic	Malabsorption	Hyperproduction of calcitonin (medullary thyroid cancer).
Post radiation	Liver disease	
	Kidney disease	
	Vitamin D resistance	

Hypocalcaemia other causes

Drugs Furosemide (increases renal excretion).

Enzyme induced drugs e.g. Phenytoin (induces hepatic enzymes that inactivate Vit.D).

Hypoparathyroidism

Commonly occur accidentally after surgical removal of the thyroid gland \rightarrow Latent or overt tetany.

Characterized by hypersensitivity (Low threshold) of nerves and muscles.

Can be demonstrated by two signs:

Chvostek's sign:

Tapping the facial nerve as it emerge from the parotid gland In front of the ear \rightarrow Contraction of the facial muscles.

Trousseau's sign:

Arresting blood flow to the forearm for few minutes \rightarrow Flexion of the wrist, thumb and metacarpophalangeal joints.

Hypocalcaemia – Clinical Features

- Neuromuscular excitability
- Paraesthesia (tingling sensation) around mouth, fingers and toes
- Muscle cramps, carpopedal spasms
- Tetany
- Seizures focal or generalised
- Laryngospasm, stridor and apneas (neonates)
- Cardiac rhythm disturbances (prolonged QT interval)
- Chvostek's and Trousseau's signs latent hypocalcemia

Tetanus $\rightarrow \uparrow$ influx of sodium ions at motor neurons and interneurons $\rightarrow \uparrow$ conduction of impulses \rightarrow reflex muscle contraction causing:

- 1- Spasm of larynx and bronchus \rightarrow asphyxia and death.
- 2- Muscle cramps.
- 3- Coronarospasm (cardiotetanus) \rightarrow angina \rightarrow infarction

Hyperfunction

Hypofunction

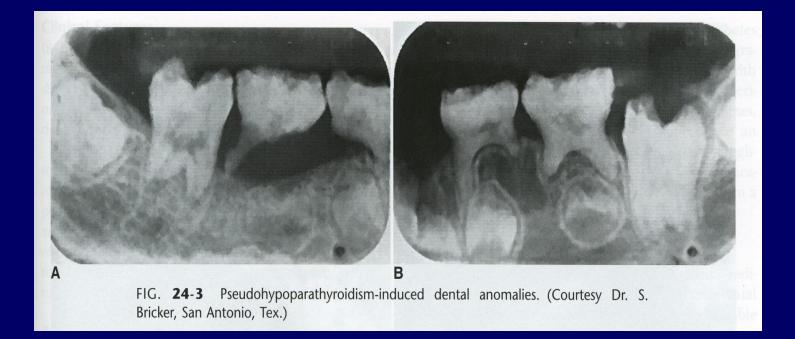
hypercalciemia hypophosphatemia hyperphosphaturia osteoporosis Accumulation of Calcium in tissues hypocalciemia hyperphosphatemia hypophosphaturia tetanus

Pseudohypoparathyroidism

• Symptoms and signs

- Hypocalcemia
- Hyperphosphatemia
- Characteristic physical appearance: short stature, round face, short thick neck, obesity, shortening of the metacarpals
- Autosomal dominant

Resistance to parathyroid hormone


• The patients have normal parathyroid glands, but they fail to respond to parathyroid hormone or PTH injections

• Symptoms begin in children of about 8 years

- -Tetany and seizures
- Hypoplasia of dentin or enamel and delay or absence of eruption occurs in 50% of people with the disorder

• Treatment: vitamin D and calcium

Pseudohypoparathyroidism

Short stature, enamel hypoplasia

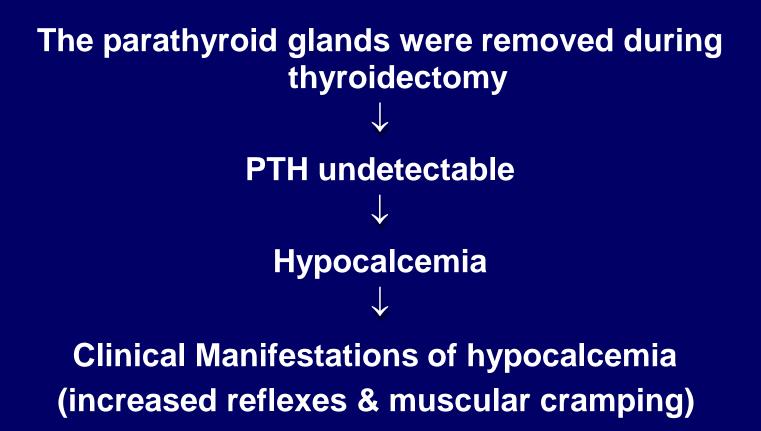
Congenital Hypoparathyroidism

Hypoplasia of the teeth, shortened roots, and retarded eruption

Case Study

- A 27 years old man presents to his physician 3 weeks after his thyroid surgically removed for a thyroid cancer.
- However, since he went home from the hospital, he noticed painful, involuntary muscular cramping.
- He also felt numbness and tingling around his mouth & in his hands and feet. His parents said that he was irritable for the last 2 weeks.
- He is on levothyroxine medication.

On examination


•

- He has a well-healing thyroidectomy scar & no palpable masses in the thyroid bed .
- Blood pressure cuff inflated above the systolic pressure induces involuntary muscular contracture in the ipsilateral hand after 60 seconds (Trousseau's sign(
- Tapping on the face interior to the ears cause twitching in the ipsilateral corner of the mouth (Chevostek's sign)

Lab Investigations:

Calcium: 5.6 mg/dl (N: 8.5 – 10.2) Albumin: 4.1 g/dl (N: (3.5 – 4.8) PTH: < 1 pg/ml (N: 11- 54)

ETIOLOGY OF HYPERCALCEMIA

o Increased GIT absorption:

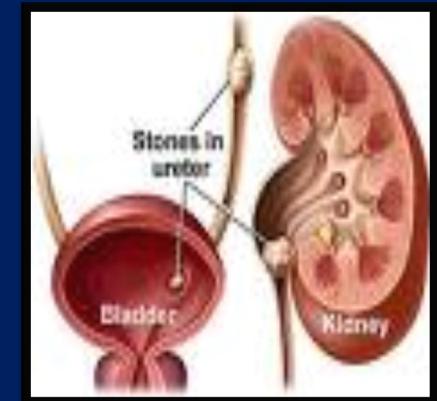
Vitamin D excess Elevated PTH

• Decreased urinary excretion: Thiazide diuretics

o Increased loss from bone:

Elevated PTH Hyperparathyroidism Malignancy (some lung cancers)

Osteolytic metastases


Hyperparathyroidism

- The disorder is characterized by hypercalcemia, hypercalcuria, hypophosphatemia, and hyperphosphaturia
- Parathyroid hormone causes phosphaturia and a decrease in serum phosphate
- Calcium rises and it is also secreted in the urine
- Most common complication are renal stones made of calcium phosphate
 - Stone chemistries: calcium, phosphate, urate
- Most serious complication is the deposition of calcium in the kidney tubules resulting in impaired renal function

COMPLICATION:

- Metastatic calcification
- Renal stones

Hypercalciemia The quantity of calcium in blood more than 2.6 mmol/L

Causes:

- <u>Hyperparathyroidism</u> and <u>Malignant neoplasms</u> account for majority of hypercalcemia
- Neoplasms most frequently associated with hypercalcemia:
 Breast cancer, lung cancer and multiple myeloma
- Single adenomas of the parathyroid gland account for 75% of primary hyperparathyroidism associated with hypercalcemia.

Parathyroid Hormone related Peptide (PTHrP)

- Can activate the PTH receptor
- Plays a physiological role in lactation, possibly as a hormone for the mobilization and/or transfer of calcium to the milk
- May be important in fetal development
- May play a role in the development of hypercalcemia of malignancy
 - Some lung cancers are associated with hypercalcemia
 - Other cancers can be associated with hypercalcemia

- "Stones"
- "Bones"
- "Abdominal moans"
- "Psychic groans"
- Neuromuscular
- Cardiovascular
- Other

- Renal "stones"
 - Nephrolithiasis
 - Nephrogenic DI: polydipsia and polyuria
 - Dehydration
 - Nephrocalcinosis

Skeleton "bones"

- Bone pain, arthralgias
- Osteoporosis of cortical bone such as wrist

 In primary hyperparathyroidism:
 Subperiosteal resorption, leading to osteitis fibrosa cystica with bone cysts and brown tumors of the long bones

- Gastrointestinal "abdominal moans"
 - Nausea, vomiting
 - Anorexia
 - weight loss
 - Constipation
 - Abdominal pain
 - Pancreatitis
 - Peptic ulcer disease

- "Psychic groans"
 - Impaired concentration and memory
 - Confusion, stupor, coma
 - Lethargy and Fatigue

Neuromuscular

- -Reduced neuromuscular excitability and muscle weakness
- Easy fatigability and muscle weakness more common in hyperparathyroidism than other hypercalcemic conditions
- Clinical features of hyperparathyroid myopathy:
 - Proximal muscle weakness, wasting and mild nonspecific myopathic features on electromyogram and muscle biopsy

- Cardiovascular
 - Shortened QT interval on electrocardiogram
 - Cardiac arrhythmias
 - Vascular calcification

- Other
 - Itching
 - Keratitis
 - Conjunctivitis
 - Corneal calcification, band keratopathy
 - Carpal tunnel syndrome has occasionally been associated with hyperparathyroidism

CASE REPORT

A 59 year old woman with a past medical history significant for hypertension who comes for a routine clinic visit. She initially states that she has no symptomatic complaints, but later in the interview describes chronic fatigue and a mildly depressed mood. Her exam is unremarkable. She used thiazide diuretics as treatment for hypertension, Labs results showed:

(normal ~ 8.5-10.2 mg/dL) (normal ~ 2.0-4.3 mg/dL) (normal ~ 3.5-5.0 g/dL) (normal ~ 10-60 pg/mL) Creatinine – 1.2 mg/dL Calcium (total) – 11.9 mg/dL

Phosphate – 1.8 mg/dL

Albumin – 3.8 g/dL PTH – 124 pg/mL **Metabolic Diseases of Bones**

RICKETS

Normal formation of the collagen matrix BUT Incomplete mineralization (poor calcification(

Soft Bones

CLINICALLY: Bone Deformity (Rickets)

OSTEOMALACIA

Demineralization (poor calcification) of preexisting bones

CLINICALLY: More Susceptibility to Fracture

> Rickets :

is a softening of bones in children potentially leading to fractures and deformity. The predominant cause is a vitamin D deficiency, lack of calcium in the diet may also leads to rickets

(bow-legged) due to weight bearing on the legs.

> Osteomalacia :

is the softening of the bones due to defective bone mineralization It may show signs as diffuse body pains, fragility of the bones. A common cause of the disease is deficiency in vitamin D, which is normally obtained from the diet and/or sunlight exposure

Rickets

Vitamin D-resistant rickets

A deficiency of renal 1α-hydroxylase enzyme produces vitamin D-resistant rickets

- Sex linked gene on the X chromosome

-Teeth may be hypoplastic and eruption may be retarded

Vitamin D-Resistant Rickets

• Above: Hypoplastic teeth

- Below: Minimal caries can produce pulpitis; periapical abscesses are thus common
- Lack 1α-hydroxylase in kidney
- Rx: Respond well to 1, 25dihydroxy vit. D₃

Renal Rickets Renal Osteodystrophy

In Chronic Renal Failure

Low activity of Renal 1α-hydroxylase

Decreased ability to form the active form of vitamin D (1, 25 DHCC will be low) Treatment: 1,25 DHCC (Calcitriol)

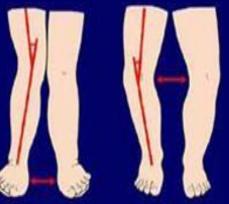
Vitamin D deficiency

Childhood

Rickets

- Bony deformity e.g. bowing of long bones widening of cartilage at growth plate
- Bone pain
- Weakness

Images of Rickets


Wrist expansion: cupping and fraying of hypertrophied metaphyseal plate

Bone demineralization and deformity

Rachitic Rosary

Case - Anna - Task

Osteomalacia

- After closure of epiphyseal plates
- Impaired mineralization
- □ Fractures
- Lab tests
 - Low calcium & phosphate
 - High ALP
- □ X-rays
 - □ Looser's zones → Fractures

Vitamin D deficiency

Adulthood

Osteomalacia

- Bone pains
- Proximal myopathy
- Fractures e.g. through Looser's zones

Associated Clinical Conditions

- Muscle Weakness and Falls
 - Proximal muscle weakness
 - Chronic muscle aches
 - Myopathy
 - Increase in falls

Recent studies suggest that vitamin D supplementation at doses between 700 and 800 IU/d in a vitamin D-deficient elderly population can significantly reduce the incidence of falls.

At-Risk Groups

Elderly

- Stores decline with age
- **Winter**
- House-bound or institutionalized
- Poor nutritional intake
- Impaired absorption
- Chronic kidney disease

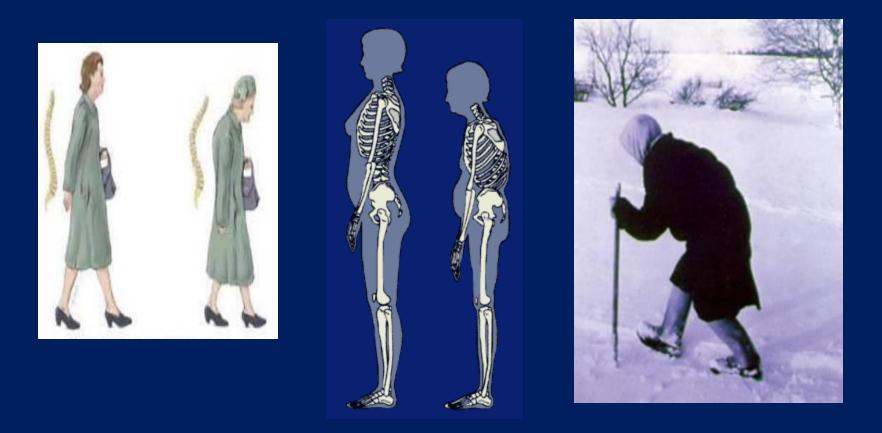
Conclusion

- Commoner than we think!
- □ Can be prevented:
 - Promote awareness, especially in high-risk groups
 - Sun-exposure
 - Safe, 10-15 minutes per day (longer with darker skin)
 - Adequate intake of fortified products in diet

Laboratory Investigations for the Diagnosis of Rickets & Osteomalacia

Investigations to <u>confirm</u> the diagnosis of rickets:

↓ Blood levels of 25-hydroxycholecalciferol (25 HCC)


↓ Blood calcium ,(hypocalcemia)

↑ Blood Alkaline phosphatase (ALP)

Osteoporosis

- Most prevalent metabolic bone disease in <u>adults</u>
- It means reduction in bone mass.
 i.e. bone matrix composition is normal, but it is reduced.
- Typically silent (without symptoms) until it leads to fracture at a minimal trauma.
 Most affected: vertebral compression (may be asymptomatic) & hip fractures (requires surgery in most cases).
- Post-menopausal women lose more bone mass than men)primary osteoporosis(

How does look osteoporotic patient

Osteoporosis

Fig. 2 Crush fractures of vertebral bodies in a patient with osteoporosis.

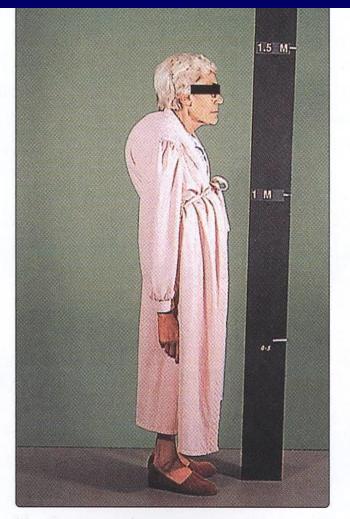
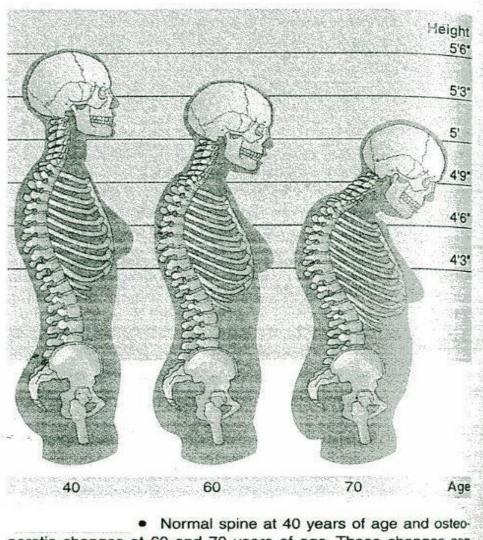



Fig. 3 Elderly woman with so-called 'Dowager's hump' from collapsed vertebrae due to osteoporosis.

Sequelae of Osteoporosis

 Normal spine at 40 years of age and osteoporotic changes at 60 and 70 years of age. These changes can cause a loss of as much as 6 to 9 inches in height and result in the so-called dowager's hump (far right) in the upper thoracic vertebrae. (From Ignatavicius D, Bayne MV: Medical-surgical nursing: a nursing process approach, Philadelphia, 1991, WB Saunders.)

Secondary Osteoporosis Risk Factors

Risk Factors for osteoporosis:

- Advanced age (esp. in females(
- Certain Drugs
- Family history of osteoporosis or fractures
- Immobilization
- Smoking
- Excess alcohol intake
- Cushing's syndrome
- Long term glucocorticoids therapy
- Hyperparathyroidism
- Hyperthyroidism
- Vitamin D disorders
- Certain malignancies

Treatment

- Exercise, activity
- Calcium intake should be 1000-1500 mg/day
 - Males and females should take in 1000-1500 mg/day
 - All adults greater than 65 years should take 1500 mg/day
 - Three glasses of milk or three cups of yogurt per day provide 1000-1500 mg/day
- Estrogen treatment
 - Estrogen inhibits osteoclastic activity
 - Estrogen may increase the incidence of breast cancer, heart attacks, stroke, blood clots
 - That it may exacerbate cardiovascular disease is controversial