

DIABETIC KETOACIDOSIS

* Please check out this link to know if there are any changes or additions.

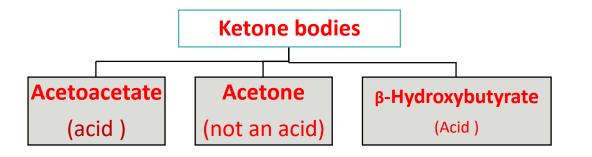
		1 mil	
	Re	vised	by
ي	خولة العمار	&	هشام الغفيلي

Color index: Important | Doctors notes | Further explanation.

Diabetic Ketoacidosis (DKA).

Hyperosmolar hyperglycaemic state (HHS)

Hypoglycemia


1. Diabetic Ketoacidosis (DKA).

- Triad of hyperglycemia, high anion gap metabolic acidosis, and ketonemia.
- Characteristically associated with T1DM.
- DKA may be the **first presentation** of T1DM.
- It has become increasingly common in <u>T2DM</u> (in severe stress).

***** Ketone bodies:

• They are <u>produced</u> by the <u>liver</u> (ketogenesis) and <u>utilized</u> for energy production **by peripheral tissues** (Ketolysis).

Dr sumbul stressed that the liver can only synthesize ketones but cannot use them And peripheral tissues only use them but cannot synthesize them

Because in the later stages of DM TYPE TWO , there is SEVERE insulin depletion So ketone production is increased

Also there is an increase in the life expectancy , so there are more people living in old age with other chronic diseases which increases production of ketone bodies , hence DKA is increasing in type 2

Note that:

- Retinopathy and nephropathy are due to CHRONIC HYPERGLYCEMIA
- DKA and HHS are due to ACUTE
- HYPERGLYCEMIA
- What will u see in the lab of a person with DKA?

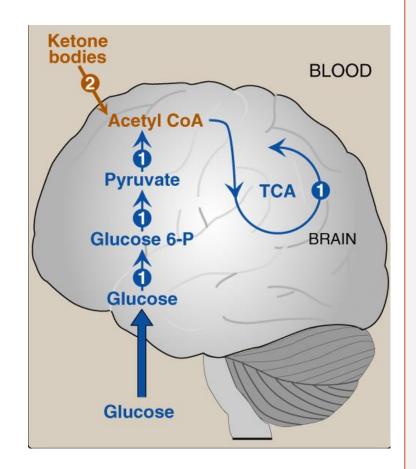
Decreased PH and bicarbonate with increased blood glucose and ketones

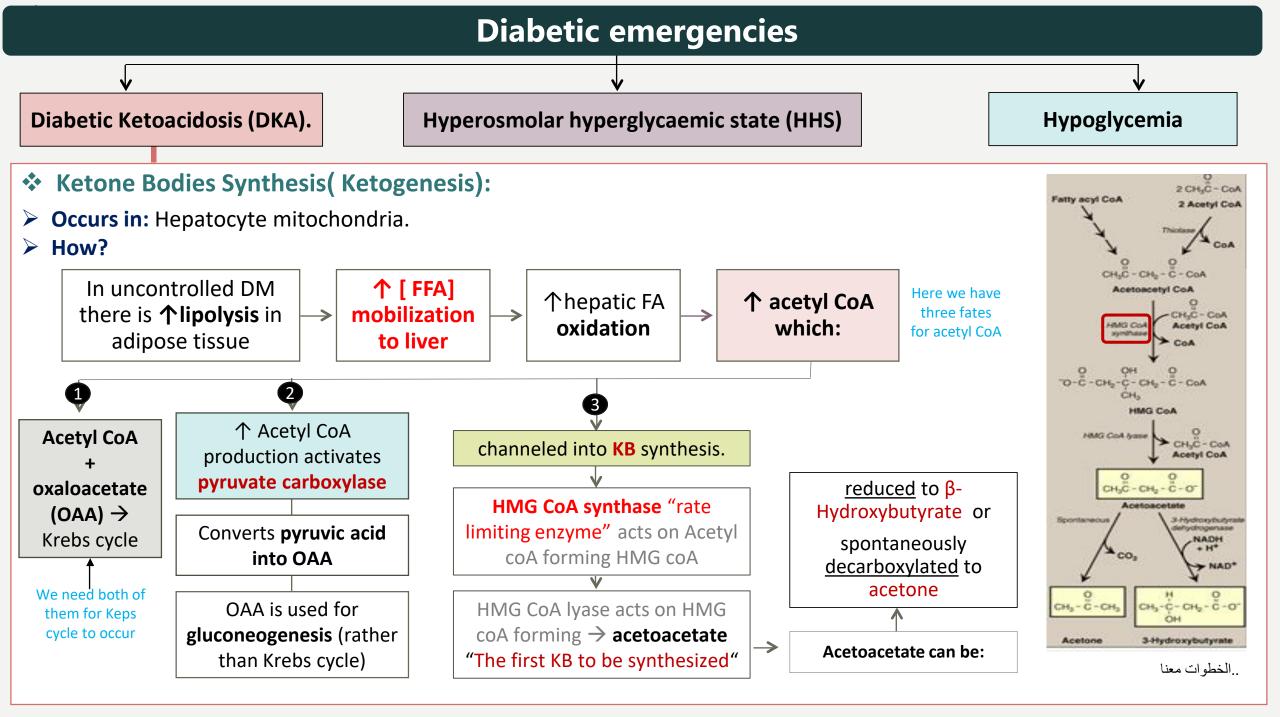
 How does metabolic acidosis become compensated? By hyperventilation (Kaussmal breathing)

Diabetic Ketoacidosis (DKA).

Hyperosmolar hyperglycaemic state (HHS)

Hypoglycemia


1. Diabetic Ketoacidosis (DKA).


Brain and Ketone bodies:

- ✓ Normally, glucose is the primary fuel for the <u>brain</u>. The brain always prefers glucose as a source of fuel, but if glucose is not available then it can use ketone bodies
- It can penetrate the blood brain barrier.
- ✓ The brain's GLUT is: insulin-independent.
- If glucose is not available for the brain, the brain can utilize plasma ketone bodies, that can penetrate the blood brain barrier, and serve as fuel molecules.

Explanation:

- 1-Glucose enters brain cells.
- 2-then turns to glucose -6- phosphate then to pyruvate.
- 3- pyruvate then turns to acetyl co A .
- 4-acetyl co A then enters TCA CYCLE to produce energy BUT if glucose is not available :
 - ketone bodies enter the brain cell
 - oxidation of ketones also yields acetyl co A which then enters TCA

DR.SUMBUL'S NOTES

الكلام حطيناه للأمانة العلمية فيه اشياء قالتها الدكتورة وميب بالسلايدز وصعبة مانكتبه.. اهم شي اللي بالاحمر.. الباقي راجع لكم

What you should know:		CONSIDERATIONS in diagnosis of DKA:				
1. <u>acetoacetyl CoA is acted upon by</u> <u>HMG Co A</u>	<u>y HMG -Co A synthase to form</u>	-In a clinical setting, once you have measured the ketones , do not measure them again after treatment (DO NOT DO A SERIAL MEASUREMENT)				
2. HMG Co A is acted upon by HMC	Co A lyase to form acetoacetate	once you start treatment beta hydroxybutarate starts to				
3. <u>Acetoacetate has two products:-</u> hydroxybutarate by 3-hydroxybu		breakdown to acetoacetate(problem of high ketone levels is being resolved) But when you measure again the acetoacetate will be high So this				
 IT IS IMPORTANT TO KNOW THAT prevalent ketone in ketoacidosis (S of DKA) 		may lead to the diagnosis of a false positive of DKA *So diagnosis depends on the the INITIAL nitroprusside test and the blood PH				

Diagnosis of DKA:

Whenever we want to measure ketones, the test that is available in labs only measures acetoacetate (This test is called nitroprusside test) In a normal physiological condition:

- The rate of ketogenesis = rate of degradation so there is no build up of ketone bodies in the blood (so no ketone build up in blood)
- the amount of acetoacetate is = beta hydroxybutarate

When the patient has DKA:

- A lot of ketone bodies are being formed, and the amount of acetoacetate is high But if you compare the levels of betahydroxybutarate to acetoacetate the ratio could be as high 6 to 1.
- So when you measure acetoacetate you will **not** get a clear picture of the amount of ketones in the blood (hence this test will NOT detect the SEVERITY of ketoacidosis), That is why measuring PH is also important in diagnosing DKA
- *note that there are specific tests to measure only betahydroxybutarate BUT they are not available in most labs
- So the nitroprusside test is still used even though it is not that accurate in terms of severity of the disease

Diabetic Ketoacidosis (DKA).

Hyperosmolar hyperglycaemic state (HHS)

Hypoglycemia

BLOOD

Acetoacetate

Acetone

3-Hydroxybutyrate

> co,

FATTY ACID

2 Acetvi CoA

Acetoacetyl Col

CoA Acetyl CoA > CoA

OXIDATION GLYCOLYSIS

AMINO ACID CATABOLISM

LIVER

3-Hydroxy-3-methylglutaryl CoA

Acetoacetate

3-Hydroxybutyrate

Acetyl CoA

- NADH+H*

>NAD+

PERIPHERAL TISSUES

(for example, MUSCLE)

-Succinate - TCoA

TCA CYCLE

Succinyl CoA

NADH+H* €

NAD¹

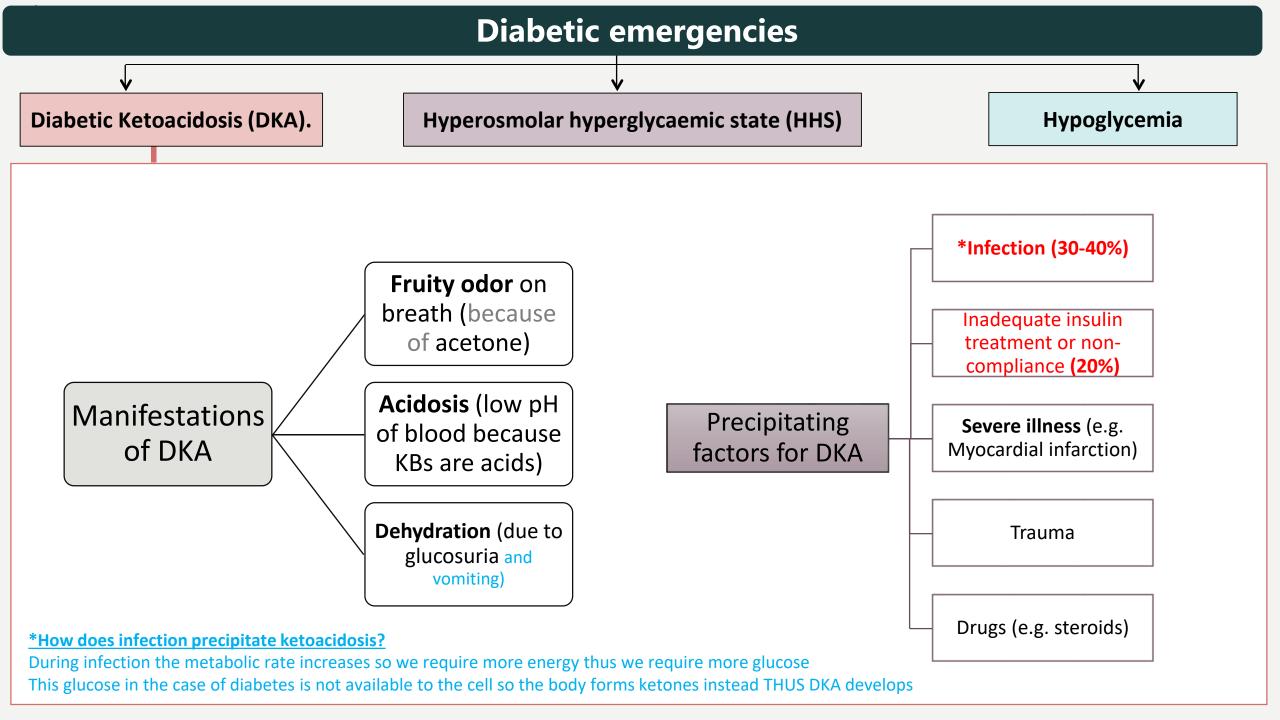
2 Acetyl CoA

Acetoacetyl

Thiophorase

Acetoacetate

3-Hydroxybutyrate


Ketone Bodies Utilization (Ketolysis) :

- **Takes place in:** extrahepatic tissues
- **Occurs in:** the mitochondria (so cannot occur in RBCs) because RBCs lack mitochondria
- <u>Does not occur in the liver (as the liver lacks the thiophorase</u> enzyme required for ketolysis).

How?

- 1- β-Hydroxybutyrate is <u>oxidized</u> to acetoacetate (by a dehydrogenase)
- 2- Acetoacetate is converted to acetoacetyl CoA (catalyzed by thiophorase)
- 3- Acetoacetyl CoA is converted to acetyl CoAs.

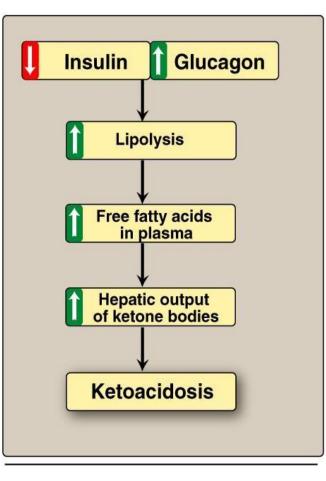
Diabetic Ketoacidosis (DKA).

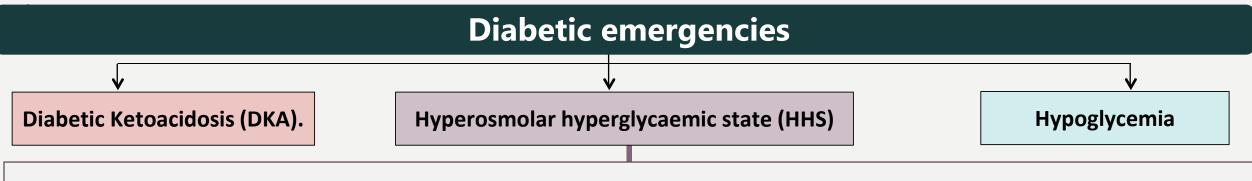
Hyperosmolar hyperglycaemic state (HHS)

Hypoglycemia

Mechanism of Dka

> In uncontrolled DM there is:


↑ lipolysis in adipose tissue → ↑ [FFA] → ↑ mobilization of FFA to liver →
 ↑ hepatic FA oxidation → ↑ hepatic acetyl CoA which will be utilized in KB synthesis (ketogenesis) → ↑ ketoacidosis


□ In uncontrolled DM: the rate of ketogenesis is > the rate of ketolysis.

- ketonemia (个[KB] in blood)
- ketonuria (↑[KB] in urine). Because the excess ketone bodies in the blood exceed the renal threshold

• Other than liver, Acetyl CoA in most tissues is used in Krebs cycle to form ATP.

2. Hyperosmolar hyperglycaemic state (HHS)

Also called: Hyperosmolar Non-ketotic acidosis (HONK).

 In HHS (i.e. HONK), insulin levels are insufficient to allow appropriate <u>glucose utilization</u> but are adequate to prevent lipolysis and subsequent ketogenesis. Insulin is deficient but not enough to induce lipolysis and ketogensis!! (this is a special characteristic of T2DM). That's why T1DM patients are thinner than T1DM, cuz proteolysis & lipolysis occur in their bodies.
 Occurs in: in elderly with T2DM.

Mortality: substantially **higher mortality** <u>than DKA (up to 15%)</u>.

Clinical features:			
Serum glucose:	Serum glucose: Serum glucose is often > 50 mmol/L		
Ketone bodies:	Ketone bodies: Little or NO accumulation of ketone bodies		
Plasma osmolality:High Plasma osmolality that could reach 380 mosmol/Kg (Normal range 275-295). In this condition there is more blood glucose, so there is more dehydration which increases the blood's osmolality			
Neurological abnormalities			

HHS & DKA

HHS

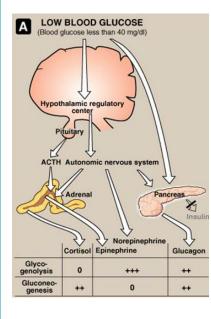
Diabetic emergencies						
Diabetic Ketoacidosis (DKA).		Hyperosmolar hyperglycaemic state (HHS)		Hypoglycemia		
3. Hypoglycemia A common complication of treatment with insulin or oral hypoglycemic						
Occurs due to?	 Impaired protective responses to hypoglycemia: 1- Insulin is supplied exogenously or oral hypoglycemics and their release <u>cannot</u> be turned off. 2- <u>Glucagon</u> & <u>adrenaline</u> response to hypoglycemia becomes impaired later in the course of DM. More common in: patients with T1DM. 					
Why it's a medical emergency?	 Because the brain has absolute requirement for a continuous supply of glucose. Transient hypoglycemia → cerebral dysfunction Severe, prolonged hypoglycemia → brain death 			bodies compensation in the		
Treatment:	Administration of glucose (Symptoms will resolve within minutes)					
Clinical manifestations:	 1- CNS Symptoms (confusion, aberrant behavior, or coma) 2- Low blood glucose conc. 					

الانسولين الهايبوجلايسمك درقز تنزل مستوى الجلوكوز والى حد ما تأثيرهم يحتاج انه ينعكس أو يتوقف علشان يكون فيه توازن وماندخل بحالة هايبوجلايسميا

- فاللي يصير هنا ان الشخص ياخذ الانسولين ووظيفة الجلوكاجون "المعاكسة للانسولين" بتكون مختلة فيدخل الشخص بهايبو..
 - اختلال الجلوكاجون بيظهر بالمراحل المتأخرة من المرض ليش؟ لأن الالفا سلز بتبدأ تتدمر وتتعطل.

ليش نقول عن هالحالة انها حالة طارئة ولازمها تدخل؟

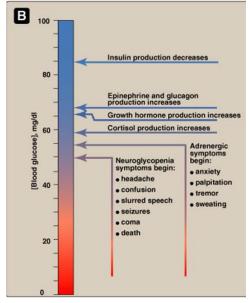
لأن الدماغ يحتاج جلوكوز بشكل مستمر كمصدر للطاقة وأي تغييرات بتسبب له مشكلة ولو كان الجلوكوز مره قليل وطول وهو قليل ممكن انه يسبب موت دماغي!


Diabetic emergencies					
Diabetic Ketoacidosis (DKA).	Diabetic Ketoacidosis (DKA). Hyperosmolar hyperglycaemic state (HHS)				
	3. Hypoglycemia				
	Clinical manifestations:				
Plasma [glucose] < 1.5 mmol/L	Plasma [glucose] < 2.6 mmol/L. (gradual fall)	plasma [glucose] < 3.6 mmol/L. (abrupt fall)			
Seizures and ultimately loss of consciousness	Symptoms of neuroglycopenia	Symptoms of sympathetic overactivity			
	Headache.Confusion.	Anxiety.Palpitation.			
	Drowsiness	Tremor.			
		Sweating.			
\land					

Diabetic Ketoacidosis (DKA).

Hyperosmolar hyperglycaemic state (HHS)

Hypoglycemia


3. Hypoglycemia

Hormonal mechanisms to prevent or correct hypoglycemia:

- Production of: insulin
- **↑** production of: Epinephrine, glucagon, Growth hormone & Cortisol
- **Explanation:**

when we have low blood glucose (less than 40 mg/dl) our brain get a signal which will secret: (ACTH —> adrenal gland —> cortisol & epinephrine), (norepinephrine) & (glucagon from pancreas). no insulin production!

- cortisol will increase gluconeogenesis.
- epinephrine & nor epinephrine will increase glycogenolysis.
- glucagon will increase both gluconeogenesis & glycogenolysis.

Glycemic thresholds for the various responses to hypoglycemia:

- Normal range is **70-100** mg/dl.
- When it gets below 70 mg/dl
 → ↓ production of insulin.
- Further \checkmark :
 - ↑ production of
 Epinephrine & Glucagon.
 - \circ \uparrow GH production.
 - \circ \uparrow Cortisol production.
- At 55 mg/dl → Adrenergic symptoms begin.
- Below 50 → neuroglycopenia symptoms begin.

METABOLIC CHANGES IN DM AND DKA

	DKA			
CHO metabolism	Lipid metabolism Protein metabolism		K+, Water & pH	
↓ glucose uptake by certain tissues (adipose tissue & muscle)	↑ lipolysis	\downarrow protein synthesis	↓ entry of K + into the cells	
↑glycogenolysis (lasts for about a day)	\uparrow fatty acid oxidation	↑ protein degradation	Water loss secondary to glycosuria	
↑gluconeogenesis	↑ production of Ketone bodies	protein degradation will gives AA which will be use in glucose formation	Acidosis due to ↑ production of <u>ketone</u> <u>bodies</u>	

A CASE OF DKA

A 14-year-old girl was admitted to a children's hospital in coma. Her mother stated that the girl had been in good health until approximately 2 weeks previously, when she developed a **sore throat and moderate fever.** She subsequently lost her appetite and generally did not feel well.

Several days before admission she began to complain of **undue thirst** and also **started to get up several times during the night to urinate.** However, on the day of admission the girl had started to **vomit**, had become **drowsy** and **difficult to arouse**, and accordingly had been brought to the emergency department.

- ***** On examination:
- She was **dehydrated**.
- Her skin was cold.
- She was breathing in a deep sighing manner (Kussmaul respiration).
- Her breath had a **fruity odor**.
- Her blood pressure was **90/60** mmHg (N: 120/80).
- Her pulse rate **115/min**.
- She could **not** be aroused

A provisional diagnosis of **T1DM** with <u>complicating</u> <u>ketoacidosis and coma</u> (DKA) was made by the intern on duty.

The admitting diagnosis was confirmed by the **laboratory findings** shown below:

Plasma analytes	patient result	Normal levels		Urine	Patient	Normal	
Glucose (mmol/L)	50	3.9-5.6		analytes	result	levels	
Ketoacids	++++	(trace)		Glucose	++++	-	
Bicarbonate (mmol/L)	6	22-30		Ketoacids	++++	-	
Arterial blood pH	7.07	7.35-7.45					
Na+ (mmol/L)	136 here it is normal but usually it is decreased	136-146					
Cl- (mmol/L)	100	102-109					
PCO2 (kPa)	2.7 (low due to hyperventilation)	4.3-6.0					
*Anion gap (mmol/L)	35.5 due to decreased HCO3	7-16		*Δnion gan (Δ	-)= (Na+ + K+)–	- (HCO3- + Cl-	
K+ (mmol/L)	5.5	3.5-5.0	<u> </u>				
Urea nitrogen (mmol/L)	15 high due to protein catabolism	2.5-7.1		Dehydration			
Creatinine (μ mol/L)	200	44-80		Denyuration			
Albumin (g/L)	50	41-53					
Osmolality (mOsm/kg serum water)	325	275-295		high Glucose in	blood		
Hematocrit	0.500 high due to dehydration	0.354-0.444		Dehydration			

435 Biochemistry Team

iochemistry Teaⁱ INTERPRETATION OF LABORATORY FINDINGS

Results	Interpretation				
Hyperglycemia					
Glucosuria	Confirm the diagnosis of DKA				
Ketonemia	Confirm the diagnosis of DKA				
Ketonuria					
↓рН	Severe metabolic acidosis due to \uparrow production of ketone bodies				
\downarrow bicarbonate and PCO ₂	Metabolic acidosis with partial respiratory compensation (the hyperventilation)				
↑ anion gap	Due to 1 ketone bodies in the blood				
↑ urea & creatinine	 Renal impairment (dehydration → ↓ blood volume (with hypothermia) → ↓ renal perfusion) 2. Dehydration 3. Degradation of protein (for urea) 				
↑ K+	↓ Uptake of potassium by cells in the absence of insulin . And also because the high H+ ions in the blood go into the cells So the intracellular potassium goes out into the blood to maintain the neutrality				
↑ Plasma osmolality	Due to hyperglycemia and fluid loss				
12E Diachamistry Team					

435 Biochemistry Team

Check your understanding!

Q1: hyperkalemia in diabetic ketoacidosis is due to?

- A. Aldosterone deficiency
- B. Insulin deficiency
- C. Excess cortisol
- D. Excess renin

Q2: Ketonuria is caused by?

- A. Elevated 3-hydroxybutyrate in urine.
- B. Elevated acetoacetate in blood.
- C. Elevated Triacylglycerol in urine.
- D. Elevated glucose in blood.

Q3: Regarding T1DM with complicating ketoacidosis and coma, which of following Laboratory findings is true:

- A. Glucouria
- B. Decrease Plasma osmolality
- C. Increased pH
- D. Hypokalemia

Q4:Which of following is precipitating factors for DKA:

- A. Infection
- B. Drugs e.g., steroids
- C. Inadequate insulin treatment or non-compliance
- D. All of the above

Q5: In order to diagnose patient with diabetic ketoacidosis (DKA), the patient must have the triad of:

- A. Hypoglycemia, metabolic acidosis with high anion gap, and ketonemia
- B. Hyperglycemia, metabolic alkalosis with high anion gap, and ketonemia
- C. Hyperglycemia, metabolic acidosis with high anion gap, and ketonemia
- D. Hyperglycemia, metabolic acidosis with low anion gap, and ketonemia

Done by:

-شهد العنزي. – عبدالله الغزي. – نورة الرميح. – ثاني معافا. - عبدالله الفريح. – ريفان هاشم. – عبدالله الشنيفي. – احمد الرويلي.

Revised by:

–فارس المطيري.

Resources:

- 435's slides and notes.
- Biochemistry: Lippincott's illustrated reviews 6th edition.

Bye have to study so I can be better than everyone I hate

35biochemistryteam@gmail.com

@biochemteam435