Diabetic emergencies

1- Diabetic Ketoacidosis

Triad of hyperglycemia, high anion gap metabolic acidosis, and ketonemia. Characteristically associated with T1DM (may be the first presentation of it). It has become increasingly common in <u>T2DM</u> (in severe stress).

Ketone BodiesKetone bodies are: 1-Acetoacetate 2-AcetoneProducts of fatty acid3-β-Hydroxybutyratemetabolism.produced by hepatocyte mitochondria (ketogenesis) and
utilized for energy by peripheral tissues (Ketolysis)

Normally, glucose is the **primary fuel for the brain** If glucose is **not available** for the brain, the brain can utilize plasma ketone bodies, , that <u>can penetrate the blood brain barrier</u>, and serve as fuel molecules (The brain's GLUT is: insulin-independent).

Ketone Bodies Synthesis

In uncontrolled DM there is \uparrow lipolysis in adipose tissue $\rightarrow \uparrow$ [FFA] mobilization to liver. 1- \uparrow hepatic FA oxidation $\rightarrow \uparrow$ acetyl CoA which will be channeled into KB synthesis

2-Acetyl CoA \rightarrow Acetoacetyl CoA \rightarrow HMG CoA through: **HMG CoA synthase** "rate limiting enzyme"

3-HMG CoA → acetoacetate "The first KB to be synthesized"

4- Acetoacetate can be:

reduced to β -Hydroxybutyrate ,

or

spontaneously decarboxylated to acetone

- Acetyl CoA + oxaloacetate (OAA) \rightarrow Krebs cycle.

- \uparrow Acetyl CoA production activates **pyruvate carboxylas** \rightarrow Converts **pyruvic acid into OAA** \rightarrow OAA is used for **gluconeogenesis** (rather than Krebs cycle).

Ketone Bodies Utilization

Occurs in the mitochondria (so cannot occur in RBCs)

Does not occur in the liver (as the liver lacks the **thiophorase enzyme** required for ketolysis).

 β -Hydroxybutyrate <u>oxidation</u> acetoacetate.

Acetoacetate is converted to acetoacetyl CoA (catalyzed by thiophorase).

Acetoacetyl CoA is converted to acetyl CoAs.

In uncontrolled DM there is \uparrow lipolysis in adipose tissue $\rightarrow \uparrow$ [FFA] $\rightarrow \uparrow$ mobilization of FFA to liver $\rightarrow \uparrow$ hepatic FA oxidation $\rightarrow \uparrow$ hepatic acetyl CoA which will be utilized in KB synthesis (ketogenesis) \rightarrow ketoacidosis In uncontrolled DM the rate of ketogenesis is > the rate of ketolysis \rightarrow ketonemia (\uparrow [KB] in blood) \rightarrow ketonuria (\uparrow [KB] in urine).

Manifestations of DKA

- 1- Fruity odor of breath (because of acetone)
- 2-Acidosis (low pH of blood because KBs are acids)
- 3-Dehydration (due to glucosuria)

Precipitating factors for DKA

Infection (30-40%).

Inadequate insulin treatment or non-compliance (20%).

Severe illness (e.g. Myocardial infarction), Trauma, Drugs: e.g., steroids.

2- Hyperosmolar Hyperglycemic state (HHS)

insulin levels are insufficient to allow appropriate glucose utilization but are adequate to prevent lipolysis and subsequent ketogenesis. (also called Hyperosmolar Non-ketotic acidosis (HONK).

Characteristic

- 1- Little or NO accumulation of ketone bodies 2- Serum glucose is often >50 mmol/L
- 3-Plasma osmolality could reach 380 mosmol/Kg (Normal range 275-295)
- 4- Usually occurs in elderly with T2DM 5- Neurological abnormalities

3-hypoglaycemia

It is a common complication of treatment with insulin or oral hypoglycemics. More common in patients with T1DM.

Hypoglycemia is a medical emergency Because the brain has absolute requirement for a **continuous** supply of glucose. **Transient hypoglycemia** \rightarrow **cerebral dysfunction Severe, prolonged hypoglycemia** \rightarrow **brain death**

manifestations of hypoglycemia CNS Symptoms Low blood glucose conc Symptoms resolved within minutes following the administration of glucose

Hypoglycemia occurs due to impaired protective responses to hypoglycemia:

- 1- Insulin is supplied exogenously and its release cannot be turned off
- 2- Glucagon & adrenaline response to hypoglycemia becomes impaired later in the course of DM

Clinical presentation:

1- Symptoms of sympathetic overactivity (plasma [glucose] <3.6 mmol/L, abrupt fall): anxiety, tremors, sweating & palpitation 2- Symptoms of neuroglycopenia (plasma [glucose] <2.6 mmol/L, gradual fall):
headache, confusion, drowsiness.
3- ultimately loss of consciousness or seizures (at plasma [glucose] <1.5 mmol/L)

Hormonal mechanisms to prevent or correct hypoglycemia:

 \downarrow Production of: insulin

↑production of: Epinephrine, glucagon, Growth hormone & Cortisol

Metabolic changes in DM & DKA		
СНО	 ↓ glucose uptake by certain tissues (adipose tissue & muscle) ↑ glycogenolysis ↑ gluconeogenesis 	
Lipid	 ↑ Lipolysis ↑ fatty acid oxidation ↑ production of Ketone bodies 	DM
Protein	 ↓ protein synthesis ↑ protein degradation 	
K+, Water & pH	↓ entry of K+ into the cells. Water loss secondary to glycosuria Acidosis due to ↑ production of ketone bodies	DKA