



# Extra-summaries for Oral Hypoglycemics lecture (8 & 9)



#### Drugs used in diabetes mellitus

# (50)

#### Insulin and other injectable drugs

- Human insulin is made by recombinant DNA technology.
   For routine use, it is given subcutaneously (by intravenous infusion in emergencies).
- Different formulations of insulin differ in their duration of action:
  - fast- and short-acting soluble insulin: peak action after subcutaneous dose 2–4 h and duration 6–8 h; it is the only formulation that can be given intravenously
  - intermediate-acting insulin (e.g. isophane insulin)
  - long-acting forms (e.g. insulin zinc suspension).
- The main unwanted effect is hypoglycaemia.
- Altering the amino acid sequence ('designer' insulins, e.g. lispro and glargine) can usefully alter insulin kinetics.
- Insulins are used for all type 1 diabetic patients and approximately one-third of patients with type 2 diabetes.
- Exenatide is an incretin mimetic which is injected twice daily in some type 2 diabetic patients inadequately controlled by oral drugs. Unlike insulin it causes weight loss.

#### Oral hypoglycaemic drugs

- These are used in type 2 diabetes.
- Biguanides (e.g. **metformin**):
- have complex peripheral actions in the presence of residual insulin, increasing glucose uptake in striated

- muscle and inhibiting hepatic glucose output and intestinal glucose absorption
- cause anorexia and encourage weight loss
- can be combined with sulfonylureas.
- Sulfonylureas and other drugs that stimulate insulin secretion (e.g. **tolbutamide**, **glibenclamide**, **nateglinide**):
  - can cause hypoglycaemia (which stimulates appetite and leads to weight gain)
  - are effective only if B cells are functional
  - block ATP-sensitive potassium channels in B cells
  - are well tolerated but promote weight gain.
- Thiazolidinediones (e.g. pioglitazone):
- increase insulin sensitivity and lower blood glucose in type 2 diabetes
- can cause weight gain and oedema
- increase osteoporotic fractures
- are peroxisome proliferator-activated receptor-γ (a nuclear receptor) agonists.
- Gliptins (e.g. sitagliptin):
  - potentiate endogenous incretins by blocking DPP-4
  - are added to other orally active drugs to improve control in patients with type 2 diabetes
  - are well tolerated and weight neutral.
- α-Glucosidase inhibitor, acarbose:
  - reduces carbohydrate absorption
  - causes flatulence and diarrhoea.

#### Clinical uses of oral hypoglycaemic drugs



- Type 2 diabetes mellitus, to reduce symptoms from hyperglycaemia (e.g. thirst, excessive urination). ('Tight' control of blood glucose has only a small effect on vascular complications in this setting.)
- Metformin is preferred for obese patients unless contraindicated by factors that predispose to lactic acidosis (renal or liver failure, heart failure, hypoxaemia).
- Acarbose (α-glucosidase inhibitor) reduces carbohydrate absorption; it causes flatulence and diarrhoea.
- Drugs that act on the sulfonylurea receptor (e.g. tolbutamide, glibenclamide) are well tolerated but often promote weight gain.
- Glitazones (e.g. **pioglitazone**) improve control (reduce haemoglobin A<sub>1C</sub>) but increase weight, cause fluid retention and increase risk of fractures.
- Gliptins (e.g. sitagliptin) improve control, are well tolerated and weight neutral, but long-term experience is lacking.

| DRUG CLASS                                                                                                    | MECHANISM<br>OF ACTION                                                                                                                | EFFECT ON<br>PLASMA<br>INSULIN | RISK OF<br>HYPO-<br>GLYCEMIA | COMMENTS                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First-generation sulfonylureas  Tolbutamide  Second-generation sulfonylureas  Glipizide Glyburide Glimepiride | Stimulates insulin secretion  Stimulates insulin secretion                                                                            |                                | Yes<br>Yes                   | Well-established history of effectiveness. Weight gain can occur.  Well-established history of effectiveness. Weight gain can occur.                                                                                                 |
| Glinides<br>Nateglinide<br>Repaglinide                                                                        | Stimulates insulin secretion                                                                                                          | Û                              | Yes<br>(rarely)              | Short action with less hypoglycemia either at night or with missed meal. Post-prandial effect.                                                                                                                                       |
| Biguanides<br>Metformin                                                                                       | Decreases endogenous<br>hepatic production of<br>glucose                                                                              | 0                              | No                           | Preferred agent for type 2 diabetes.<br>Well-established history of effectiveness.<br>Weight loss may occur. Monitor renal<br>function.                                                                                              |
| Thiazolidinediones<br>(glitazones)<br>Pioglitazone<br>Rosiglitazone                                           | Binds to peroxisome proliferator-activated receptor-γin muscle, fat and liver to decrease insulin resistance.                         | 00                             | No                           | Effective in highly insulin-resistant patients. Once-daily dosing for <i>pioglitazone</i> . Monitor liver function.                                                                                                                  |
| α-Glucosidase<br>inhibitors<br>Acarbose<br>Miglitol                                                           | Decreases glucose<br>absorption                                                                                                       |                                | No                           | Taken with meals. Adverse gastro-<br>intestinal effects.                                                                                                                                                                             |
| DPP-IV inhibitors  Sitagliptin  Saxagliptin                                                                   | Increases glucose-<br>dependent insulin release;<br>decreases secretion of<br>glucagon                                                | Û                              | No                           | Once-daily dosing. May be taken with or without food. Well tolerated.                                                                                                                                                                |
| Incretin mimetics  Exenatide  Liraglutide                                                                     | Increases glucose-<br>dependent insulin release;<br>decreases secretion of<br>glucagon; slows gastric<br>emptying; increases satiety. | Û                              | No                           | Because of its short duration of action, exenatide should be injected twice daily within 60 minutes prior to morning and evening meals  Liraglutide is has a long half-life, allowing for once-daily dosing without regard to meals. |

Figure 24.13
Summary of oral agents used to treat diabetes. = little or no change. DDP-IV = dipeptidyl peptidase-IV.

## SUMMARY Drugs Used for Diabetes

| Subclass                                                                                                                          | Mechanism of Action                                                                                    | Effects                                                                                                                                               | Clinical Applications         | Pharmacokinetics,<br>Toxicities, Interactions                                                                                                                                                                                    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Rapid-acting: Lispro, aspart, glulisine     Short-acting: Regular     Intermediate-acting: NPH     Long-acting: Detemir, glargine | Activate insulin receptor                                                                              | Reduce circulating glucose • promote glucose transport and oxidation; glycogen, lipid, protein synthesis; and regulation of gene expression           | Type 1 and type 2<br>diabetes | Parenteral (SC or IV) • duration varies (see text) • Toxicity: Hypoglycemia, weight gain, lipodystrophy (rare)                                                                                                                   |  |  |  |
| SULFONYLUREAS                                                                                                                     |                                                                                                        |                                                                                                                                                       |                               |                                                                                                                                                                                                                                  |  |  |  |
| <ul><li> Glipizide</li><li> Glyburide</li><li> Glimepiride</li></ul>                                                              | Insulin secretagogues:<br>Close K <sup>+</sup> channels in beta<br>cells • increase insulin<br>release | In patients with functioning<br>beta cells, reduce circulating<br>glucose • increase glycogen,<br>fat, and protein formation •<br>gene regulation     | Type 2 diabetes               | Orally active • duration<br>10–24 h • <i>Toxicity:</i><br>Hypoglycemia, weight<br>gain                                                                                                                                           |  |  |  |
| Tolazamide, tolbutamide, chlorpropamide: Older sulfonylureas, lower potency, greater toxicity; rarely used                        |                                                                                                        |                                                                                                                                                       |                               |                                                                                                                                                                                                                                  |  |  |  |
| GLITINIDES                                                                                                                        |                                                                                                        |                                                                                                                                                       |                               |                                                                                                                                                                                                                                  |  |  |  |
| • Repaglinide                                                                                                                     | Insulin secretagogue:<br>Similar to sulfonylureas<br>with some overlap in<br>binding sites             | In patients with functioning<br>beta cells, reduces circulat-<br>ing glucose • increases<br>glycogen, fat, and protein<br>formation • gene regulation | Type 2 diabetes               | Oral • very fast onset of action • duration 5–8 h • Toxicity: Hypoglycemia                                                                                                                                                       |  |  |  |
| Nateglinide                                                                                                                       | Insulin secretagogue:<br>Similar to sulfonylureas<br>with some overlap in<br>binding sites             | In patients with functioning<br>beta cells, reduces circulating<br>glucose • increases glycogen,<br>fat, and protein formation<br>• gene regulation   | Type 2 diabetes               | Oral • very fast<br>onset and short duration<br>(< 4 h) • <i>Toxicity:</i><br>Hypoglycemia                                                                                                                                       |  |  |  |
| BIGUANIDES                                                                                                                        |                                                                                                        |                                                                                                                                                       |                               |                                                                                                                                                                                                                                  |  |  |  |
| • Metformin                                                                                                                       | Obscure: Reduced hepatic and renal gluconeogenesis                                                     | Decreased endogenous glucose production                                                                                                               | Type 2 diabetes               | Oral • maximal plasma concentration in 2–3 h • Toxicity: Gastrointestinal symptoms, lactic acidosis (rare) • cannot use if impaired renal/hepatic function • congestive heart failure (CHF), hypoxic/acidotic states, alcoholism |  |  |  |
| ALPHA-GLUCOSIDASE INHIBITORS                                                                                                      |                                                                                                        |                                                                                                                                                       |                               |                                                                                                                                                                                                                                  |  |  |  |
| Acarbose, miglitol                                                                                                                | Inhibit intestinal<br>α-glucosidases                                                                   | Reduce conversion of starch<br>and disaccharides to mono-<br>saccharides • reduce post-<br>prandial hyperglycemia                                     | Type 2 diabetes               | Oral • rapid onset • Toxicity:<br>Gastrointestinal symptoms<br>• cannot use if impaired<br>renal/hepatic function,<br>intestinal disorders                                                                                       |  |  |  |

(continued)

|                                                                                                             |                                                                                        |                                                                                                                                                                       |                               | Pharmacokinetics,                                                                                                                                                                           |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Subclass                                                                                                    | Mechanism of Action                                                                    | Effects                                                                                                                                                               | Clinical Applications         | Toxicities, Interactions                                                                                                                                                                    |  |  |  |  |
| THIAZOLIDINEDIONES                                                                                          |                                                                                        |                                                                                                                                                                       |                               |                                                                                                                                                                                             |  |  |  |  |
| Pioglitazone                                                                                                | Regulates gene expression by binding to PPAR- $\gamma$ and PPAR- $\alpha$              | Reduces insulin resistance                                                                                                                                            | Type 2 diabetes               | Oral • long-acting (> 24 h) • Toxicity: Fluid retention, edema, anemia, weight gain, macular edema, bone fractures in women • cannot use if CHF, hepatic disease                            |  |  |  |  |
| Rosiglitazone                                                                                               | Regulates gene expression by binding to PPAR-γ                                         | Reduces insulin resistance                                                                                                                                            | Type 2 diabetes               | Oral • long-acting (> 24 h) • Toxicity: Fluid retention, edema, anemia, weight gain, macular edema, bone fractures in women • cannot use if CHF, hepatic disease • may worsen heart disease |  |  |  |  |
| GLUCAGON-LIKE POLYPEP                                                                                       | TIDE-1 (GLP-1) RECEPTOR AG                                                             | ONISTS                                                                                                                                                                |                               |                                                                                                                                                                                             |  |  |  |  |
| • Exenatide                                                                                                 | Analog of GLP-1: Binds to<br>GLP-1 receptors                                           | Reduces post-meal glucose<br>excursions: Increases<br>glucose-mediated insulin<br>release, lowers glucagon<br>levels, slows gastric empty-<br>ing, decreases appetite | Type 2 diabetes               | Parenteral (SC) • half-life ~2.4 h • <i>Toxicity:</i> Nausea, headache, vomiting, anorexia, mild weight loss, pancreatitis                                                                  |  |  |  |  |
| • Liraglutide: Similar to exenatide; duration up to 24 h; immune reactions, possible thyroid carcinoma risk |                                                                                        |                                                                                                                                                                       |                               |                                                                                                                                                                                             |  |  |  |  |
| DIPEPTIDYL PEPTIDASE-4 (                                                                                    | DPP-4) INHIBITORS                                                                      | 3311 3341                                                                                                                                                             |                               |                                                                                                                                                                                             |  |  |  |  |
| • Sitagliptin                                                                                               | DPP-4 inhibitor: Blocks<br>degradation of GLP-1,<br>raises circulating GLP-1<br>levels | Reduces post-meal glucose<br>excursions: Increases<br>glucose-mediated insulin<br>release, lowers glucagon lev-<br>els, slows gastric emptying,<br>decreases appetite | Type 2 diabetes               | Oral • half-life ~12 h • 24-h<br>duration of action •<br><i>Toxicity</i> : Rhinitis, upper<br>respiratory infections,<br>headaches, pancreatitis,<br>rare allergic reactions                |  |  |  |  |
| Saxagliptin, linagliptin: Similar to sitagliptin; longer duration of action                                 |                                                                                        |                                                                                                                                                                       |                               |                                                                                                                                                                                             |  |  |  |  |
| AMYLIN ANALOG                                                                                               |                                                                                        |                                                                                                                                                                       |                               |                                                                                                                                                                                             |  |  |  |  |
| Pramlintide                                                                                                 | Analog of amylin: Binds to amylin receptors                                            | Reduces post-meal glucose<br>excursions: Lowers glucagon<br>levels, slows gastric empty-<br>ing, decreases appetite                                                   | Type 1 and type 2<br>diabetes | Parenteral (SC) • rapid<br>onset • half-life ~ 48 min •<br><i>Toxicity</i> : Nausea, anorexia,<br>hypoglycemia, headache                                                                    |  |  |  |  |
| BILE ACID SEQUESTRANT                                                                                       |                                                                                        |                                                                                                                                                                       |                               |                                                                                                                                                                                             |  |  |  |  |
| Colesevelam<br>hydrochloride                                                                                | Bile acid binder                                                                       | Lowers glucose through unknown mechanisms                                                                                                                             | Type 2 diabetes               | Oral • 24-h duration of action • <i>Toxicity:</i> Constipation, indigestion, flatulence                                                                                                     |  |  |  |  |
|                                                                                                             |                                                                                        |                                                                                                                                                                       |                               |                                                                                                                                                                                             |  |  |  |  |

### Thank you for checking our team!



#### Sources:

- Pharmacology (Lippincotts Illustrated Reviews Series), chapter 24, 5th edition.
- 2. Basic & Clinical Pharmacology by Katzung, chapter 41,12th edition.
- 3. Rang & Dale's pharmacology, chapter 30, 7th edition.