| | Carbohydrate Metabolism: | Protein Metabolism: | Fat Metabolism: | |---------------------|--|--|---| | GH Thyroid hormone | uptake and utilization of glucose by many insulin-sensitive cells ↑ synthesis of glucose by the liver blood glucose concentration tends to rise and insulin secretion increases to compensate for the GH-induced insulin resistance. ↑ glucose uptake by cells. ↑ glycogenolysis ↑ gluconeogenesis. | ↑ amino acid uptake ↑ RNA translation ↑ transcription ↓ catabolism of protein and amino acids "protein sparer". → Increases muscle mass overall effect is catabolic leading to decrease in muscle mass. | 1. ↑ lipolysis 2. ↑ conversion of FFA to acetyl coenzyme A (utilization for energy) 3. High GH levels → ketosis → fatty liver. 1- ↑ lipolysis. 2- ↓ plasma cholesterol by ↑ loss in feces. | | Cortisol | 4- ↑ Glucose absorption from the GIT. 1. ↓ glucose uptake and utilization by cells 2. ↑ Gluconeogenesis 3. ↑ Glycogen synthesis → insulin antagonist "adrenal diabetes" | In extrahepatic tissue: (catabolic) 1. ↑ proteolysis 2. ↑ amino acid release 3. ↓ protein synthesis & stores 4. ↓ amino acid uptake → ↑ amino acid levels in the blood In the liver: (anabolic) 5. ↑ Amino acid uptake and degradation 6. ↑ proteins and plasma protein | 3- ↑ oxidation of free fatty acids. 1. ↑ Lipolysis 2. ↑ FFA in blood 3. ↑ utilization for energy 4. ↑ Ketogenesis. 5. deposition of fat in the thoracic and upper abdominal regions (buffalo hump and central obesity) | | Epinephrine | In the liver: ↑ Glycogenolysis & gluconeogenesis In skeletal muscles: ↑ Glycogenolysis → can lead to hyperglycemia | In muscles: ↑ lactate and pyruvate release. | In adipose tissue: ↑ lipolysis → ↑ FFA and glycerol in blood | | Insulin | In the liver: (+) glucose entry (+ GLUT2 transporters) (+) glycogen synthesis (↑ Glucokinase) (+) Glycolysis (-) gluconeogenesis (-) glycogenolysis (↓ phosphorylase). In muscles: (+) glucose entry (+ GLUT4 transporters) (+) glycogen synthesis In adipose tissue: (+) glucose entry (+ GLUT4 transporters) | In the liver: (+) protein synthesis In muscles: (+) amino acid uptake (+) protein synthesis in ribosomes (-) catabolism of protein (-) release of gluconeogenic AA | In the liver: (+) lipid synthesis (-) ketogenesis In muscles: (+) ketone uptake In adipose tissue: (+) glycerol phosphate synthesis (+) fatty acids synthesis (+) triglyceride deposition (+) lipoprotein lipase (for uptake of Chylomicrons and VLDL) (-) hormone-sensitive lipase = (-) lipolysis | | Glucagon | (+) Glycogenolysis
(+) Gluconeogenesis | | (+) Lipid oxidation (fully to CO2, or partially to produce ketone bodies). |