
مِ ٱللَّهِ ٱلرَّحْبَرَ ٱلرَّحِبَ

Anatomy Review File

اللهم لا سهل إلا ماجعلته سهلا وانت تجعل الحزن اذا شئت سهلا



Торіс	Slide Number
Cerebellum	3
Cerebral Hemispheres	5
Cerebral Blood Supply	7
Basal Ganglia	9
Thalamus and Limbic System	11
Meninges and CSF	13
Introduction	14
Spinal cord	16
Brachial and Lumbo-Sacral Plexus	19
Ascending Tracts	20
Brain Stem (external structures)	23
Brain Stem (internal structures)	24
Cranial Nerves (Introduction)	26
Cranial Nerve 1 + Nose	27
Cranial Nerve 2, 3, 4 & 6	28
Cranial Nerve 5, 7	30
Cranial Nerve 8 + Ear	32
Cranial Nerve 9, 10	35
Cranial Nerve 11, 12	37
Summary of Lesions	39

Extra resources:

Covered in MIDTERM

Cerebellum

	External			internal	
	-It consists of two Cerebellar Hemispheres j	-	Vermis O	uter grey matter: cerebellar cortex	
	- Its surface is highly convoluted forming <i>Folia</i> , separated by Fissures.			ner white matter: cerebellar <u>medulla</u>	
	Anatomical Subdivision			eply seated nuclei in white matter: m medial to lateral:	
	1. Anterior lobe : <u>in front</u> of primary fis	ssure, on the superior s	urface.	Fastigial nucleus: smallest one	
	 Posterior (middle) lobe: <u>behind</u> print Secondary/posterolateral fissures). 	mary fissure (Between I	Primary &	Globose nucleus.	
	 Flocculonodular lobe: in front of secondary (Posterolateral) fissure, on the 			Emboliform nucleus.	
	inferior surface .	condary (Posterolatera	i) insure, on the	Dentate nucleus: largest one.	
Cortex	The cerebellar cortex is divided into 3 layers1.Outer molecular layer2.Intermediate Purkinje cell layer3.Inner granular layer				
	Afferent (sensory) fibe	rs		Efferent Fibres	
	1- Climbing fibres: from inferior olivary nucleus, relay to purkinje cells		Axons of Purkinje Cells a medulla,	are the only axons to leave the cortex to	
	2- Mossy fibres: rest of fibres:		- and some of these axor	ns leave cerebellum as efferent fibres.	
Cerebellar Medulla				are axons of deep cerebellar nuclei.	
	 From vestibular nuclei From spinal cord 		Main Efferents go to:		
	3. <u>From</u> pons		1. Vestibular nuclei (cerebello-vestibular tract).		
	They <u>relay</u> to granule cells which in tu cells	rn <u>relay</u> to purkinje	2. Red nucleus (Dendato-rubro-thalamic tract).		
			3. Ventral la thalamic	itral lateral nucleus of thalamus (Dendato- lamic).	
	Functional Subdivisions				
	1- Archicerebellum Vestibular Part of cerebellum:		ocerebellum t of cerebellum:	3- Neocerebellum Cerebral Part of cerebellum:	
	Flocculonodular lobe.		& Paravermis	Rest of Cerebellum.	
	Fastigial	Globose	& Emboliform	Dentate	
	from Vestibular nuclei (Vestibulocerebellar fibres), Through ICP	from spinal cord (dor through ICP & ventral through SCP)	sal spinocerebellar tracts spinocerebellar tract	from Pons (Pontocerebellar fibres) through MCP	
	to Fastigial nucleus, which projects to vestibular nuclei (through ICP) + to Reticular formation	to globose & embliform nucleus (through SCP)	nuclei which project to red	to Red nucleus but mostly to Ventral Latera Nucleus of Thalamus (through SCP) then to motor cortex	
	 controls body Balance Control of eye movement 	controls posture & muscle tone coordination of volu		coordination of voluntary movements	
	MIDLINE LESION: Loss of postural control.				
	UNILATERAL LESION: "Cerebellar ataxia" causes ipsilateral:				
	1. Incoordination of arm: intention tremors (on performing voluntary movements)				
	2. Incoordination of leg: unsteady gait				
	3. Incoordination of eye movements: nystagmus				
	4. Slowness of speech: dysarthria (difficulty of speech)				
undeo	4. Siowness of speech: dysartnina (difficulty of speech)				

Cerebellum

A. Anatomical Lobes				
Anterior	Fulliculonodular	Posterior		
In front of primary fissure	In front of posterolateral fissure	Between these two fissures		

B. Deeply seated nuclei from medial to lateral:

- Fastigeal (smallest).
- Globose.
- Emboliform.
- Dentate (largest).

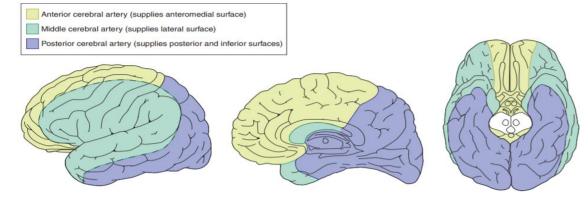
C. Afferents:

- 1. Climbing fibers from
- Inferior olivary nucleus.
- 2. Mossy fibers from:
- Vestibular nuclei.
- Spinal cord.
- Pons.

D. Efferents:

- 1. Majority do not leave cerebellum and terminate in the dentate nuclei.
- 2. Some axons leave the cerebellum (efferents) going to:
- Vestibular nuclei \rightarrow cerebello-vestibular tract.
- Red nucleus \rightarrow dentato-rubro-thalamic tract.
- Ventral lateral nucleus of thalamus \rightarrow dendato-thalamic tract.

E. Functional Subdivisions					
Subdivision	Archicerebellum	Paleocerebellum	Neocerebellum		
Nuclei Fastigeal Globos		Globose & Emboliform	Dentate		
Afferent Vestibulocerebellar		Dorsal and Ventral Spinocerebellar	Pontocerebellar		
Efferent Vestibular nuclei		Red nucleus	Motor Cortex		
FunctionBalance & eyemovement		Posture & muscle tone	Voluntary coordination		


rom	F. Le	sions
ucleus.	Midline	Unilateral
i.	Loss of postural control	Ipsilateral ataxia

Cerebral Hemispheres

White mater						
Association fibers Commiss			Commiss	sural fibers	Projection fibers	
(2) • •	 (2) Long: (Body, 9) Uncinate fasciculus Genu, 8 Arcuate fasciculus (2) Anterio commission commission (3) Hippor fasciculus commission 		ssure. campal ssure issure of or	 (1) Afferent fibers (2) Efferent fibers (Corona radiata → Internal capsule → Crus cerebri → Basilar pons → pyramid of M.O) 		
	Fro			ntal Lobe		
	Precentral gyrus Superior frontal gyrus Middle frontal gyrus Inferior frontal gyrus		Superior frontal sulcus Inferior frontal sulcus			
5	Parietal Lobe					
Anatomical Divisions	Postcentral gyrus Superior parietal lobules Inferior parietal lobules			Intraparietal s	sulcus	
mice			Temp	oral lobe		
Anator	Insula (covered by opercula) Superior temporal gyrus Middle temporal gyrus Inferior temporal gyrus		ula)	Superior temporal sulcus Inferior temporal sulcus		
			Medi	al Surface		
	Cingulate, Parahippocampal			Parietooccipit Calcarine, Cingulate	al,	

Functional Divisions					
Frontal Lobe					
Primary motor cortex	Located in <i>precentral gyrus</i>	Brodman's area 4	allows conscious control of skilled voluntary movement (i.e. controls skeletal muscles)		
Premotor cortex:	Located in the region immediately <i>anterior to the</i> <i>precentral gyrus</i>	Brodmann's area 6	Controls learned, repetitious, or patterned motor skills, typing, playing a musical instrument. Coordinates simultaneous or sequential actions. Involved in the planning of movements.		
Prefrontal cortex:	Extensive region of the frontal lobe <i>anterior to premotor area</i> .		Involved with intellect, cognition, recall, and personality. Necessary for judgement, reasoning, persistence, and conscience. Also related to mood. Closely linked to limbic system (emotional part of brain)		
Broca's (motor speech) area:	Located in the <i>inferior frontal gyrus</i> of the dominant hemisphere, usually left	Brodmann's area 44 & 45	A motor speech area that directs muscles of the tongue. Is active as one prepares to speak.		
Frontal eye field:	Located in the <i>middle frontal gyrus</i> immediately in front of premotor cortex	Brodmann's area 8			
	Par	rietal lobe			
Primary somatosensory cortex	located in <i>postcentral gyrus</i>	Brodmann's area 1, 2, 3	Involved with conscious awareness of general somatic senses Receives information from the skin and skeletal muscles Exhibits spatial discrimination Precisely locates a stimulus		
Parietal association cortex	located <i>posterior to primary somatosensory</i> cortex.		Integrates sensory information Forms comprehensive understanding of the stimulus Determines size, texture, and relationship of parts.		
	Tem	poral Lobe			
Primary auditory cortex	located in the superior surface of the <i>superior temporal gyrus</i>	Brodmann's area 41, 42	Receives information related to pitch, rhythm, and loudness		
Auditory association cortex	located immediately around the primary auditory cortex (also includes Wernick's area) Located posterior to the primary auditory cortex		Stores memories of sounds and permits perception of sounds Involved in recognizing and understanding speech Lies in the center of Wernicke's area		
Parahippocampal gyrus:	located in the <i>inferomedial part of temporal lobe</i> .		Deep to this gyrus lies the hippocampus and the amygdala , which are parts of limbic system		
	Occ	<mark>ipital lobe</mark>			
Primary visual cortex	located on the <i>medial surface</i> of the hemisphere, in the gyri surrounding the calcarine sulcus	Brodmann's area 17	Receives visual information from the retinas		
Visual association cortex	located <i>around the primary visual</i> cortex	Brodmann's area 19	Interprets visual stimuli (e.g., color, form, and movement)		

Cerebral Blood Supply

		supply		blockage
Carotid	Anterior cerebral artery	 Orbital and medial surfaces of frontal and parietal lobes. A narrow part on the superolateral surface. 	1. 2.	Motor disturbance in contralateral distal leg Difficulty in prefrontal lobe functions: • Cognitive thinking • Judgement • Motor initiation • Self monitoring
Internal C	Middle cerebral artery	 Entire Superolateral surface: 1. Somatosensory Cortex 2. Motor Cortex 3. Language areas: (Broca's Area: and Wernicke's Area) 4. Primary auditory area + Heschl's Gyrus 	1. 3. 4.	and sensory loss of face, arm, and hands more than legs
Vertebro-Basilar	Posterior cerebral artery	 Anterior and inferior temporal lobes Uncus: related to sense of smell. Inferior temporal gyri Inferior and Medial Occipital lobe (visual area) 	1 . 2 .	Visual disturbances (contralateral homonymous hemianopsia or cortical blindness/Anton's Syndrome (bilateral lesion) Memory impairment (temporal lobe)

Circle of Willis				
Constituents	Bran	nches		
2 Anterior cerebral	Anterior Perforating	Posterior Perforating		
 arteries 2 Internal carotid arteries 2 Posterior cerebral arteries 2 Posterior communicating arteries 1 Anterior communicating artery 	 Supply: 1. Large part of basal ganglia. 2. Optic chiasma. 3. Internal capsule 4. Hypothalamus 	 Supply: Ventral portion of Midbrain. Parts of Subthalamus and Hypothalamus. 		

	Venous Drainage				
	Superficial	Deep			
1.	Superior cerebral veins (superior sagittal sinus)	deep cerebral veins \rightarrow internal cerebral veins \rightarrow great cerebral			
2.	Inferior cerebral veins (transvers sinus)	vein + inferior sagittal sinus → straight sinus			
3.	Superficial middle cerebral veins (cavernous sinus)				
	Dural Veno	us Sinuses			
	Paired:	Single			
1.	Transverse	1. Superior sagittal			
2.	Sigmoid	2. Inferior sagittal			
3.	Cavernous	3. Straight			
4.	Superior petrosal	4. Occipital			
5.	Inferior petrosal				
	Blood flows from transver	se & sigmoid sinuses into			
Internal Jugular Vein.					

Basal ganglia						
	Amygdala					
Neostriatur	n (striatum)	Paleo	ostriatum	Amygdaloid nucleus		
Caudate nucleusPutamenGlobus pallidus (oldest part)		-				
Head:	Ler	nticular n	ucleus			
-Rounded in shape -Lies anterior to thalamus (in frontal lobe) -Completely separated from the putamen by the internal capsule <u>except</u> rostrally where	sed inSHAPE:teriorthree sided, wedge-shaped mass of greymus (inmatter, with a convex outer surface and anapex which lies against the genu of theinternal capsuleDIVISION:1. Larger darker lateral portion calledPutamen2. Smaller, lighter medial portion calledGlobus Pallidus		 SHAPE: three sided, wedge-shaped mass of grey matter, with a convex outer surface and an apex which lies against the genu of the internal capsule DIVISION: 1. Larger darker lateral portion called <u>Putamen</u> 2. Smaller, lighter medial portion called 			(part of limbic system) is only embryologically
rostrally where it is continuous with the putamenSeparated from pallidus by a thi of nerve fibers, lateral medullar The white matter divided, by a sh grey matter, the claustrum into the layers:		n sheath the r y lamina er is eath of	Consists of two divisions, the lateral & the medial segments, separated by a thin sheath of nerve fibers, the medial medullary lamina.	related to Corpus Striatum		
Tail: -Long & tapering -Descends, below thalamus, into temporal lobe -Continuous with Amygdaloid Nucleus	 external c between the p and claustr extreme c between the cl and the inst 	rum. rapsule austrum	The medial segment is similar, in terms of cytology and connections with the pars reticulata of substantia nigra			

Characteristics	Corpus striatum		
Nomenclature	Bands of grey matter pass from lentiform nucleus across the internal capsule to the caudate nucleus , giving the striated appearance hence, the name <i>corpus striatum</i> .		
Function	 The corpus striatum assists in regulation of voluntary movement and learning of motor skills. Their function is to facilitate behavior and movement that are required and appropriate, and inhibit unwanted or inappropriate movement. 		
Dysfunction	 Its dysfunction does NOT cause paralysis, sensory loss or ataxia <u>Its dysfunction leads to:</u> Abnormal motor control: emergence of abnormal, involuntary movements (dyskinesias) Alteration in muscle tone: hypertonia/hypotonia 		
Important relations	 Head of Caudate Nucleus: Anterior to thalamus Medial to Lentiform & separated from it by anterior limb of internal capsule Lateral to thalamus & separated from it by anterior limb of internal capsule 		
The striatum is the corpus striatum,	Innut region of	dial segment of globus pallidus & a of substantia nigra are the n.	
Afferent fibers of s from: 1. cerebral cortex, 2. intralaminar nuc thalamus & 3. pars compacta c nigra. Efferent fibers of st directed to 1. globus pallidus & 2. pars reticulata of nigra.	striatum is segments of substantia triatum is &	amic nucleus.	

Thalamus & Limbic System

Thalamus largest nuclear mass of the whole body , largest part of the diencephalon formed of: two oval masses of grey matter. o It is the gateway to the cortex, Resemble a small hen. o Together with the hypothalamus they form the lateral wall of the 3rd ventricle. o There are some thalamic nuclei that receive input from: 1. Cerebellar nuclei 2. Basal ganglia 3. Limbic-related brain regions. **Superior** Inferior Medial Lateral 4 surface **Hypothalamus** The 3rd ventricle In some people it is Posterior Lateral ventricle anteriorly & connected to the thalamus of the opposite limh of the 2 I 9 (r L N 6 F C r

	ventricle and fornix	, anterior Subthala posterior	mus	side b	эу Т	ected to the thalamus of the opposite limb of the internal sion) or Massa intermedia. capsule				
2 ends	Anterior					Posterior				
	Forms a projection, called the anterior tubercle . It lies just I the interventricular foramen.			ehind		Forms a projection called Pulvinar which lies above the superior colliculus and the lateral & medial Geniculate bodies.				
Internal	External me	dullary lam	ina			Internal m	edullary la	amir	าล	
Structure (White matter)	Covers the la •It consists corticothala	of thalamoc		&		efferent) fi anterior , n	of Y- shaped myelinated (afferent & fibers. • It divides the thalamus into: medial, lateral nuclear groups. • Each up is subdivided into a number of nar			nus into: ps. • Each of
Lateral Nuclear Group	Dorsal Tier	Lateral dorsal			Li	ateral posteric	pr		Pulvinar	
		Ventral Anterior	Ventra Latera			'entral ntermediate	Ventral Posterior		Medial geniculate nuclei	Lateral geniculate nuclei
Projection	Name of Nu	cleus		Afferen	nt			Eff	erent	
of thalamic nuclei	Anterior Thalamic Nucleus			Mammillary body.			Cingulate gyrus, (limbic system)			
	Medial Nuc	leus		Hypothalamus.			Pre	efrontal corte	x	
	Ventral Anterior Nucleus			Globus pallidus and substania nigra			Premotor cortex.			
	Ventral Lateral Nucleus			Dentate Nucleus			Primary Motor Cortex			
	Ventral Posterior Lateral Nucleus			Medial and Spinal lemnisci.		Sensory Cortex.				
	Ventral Post Nucleus	erior Media	al	Trigeminal Lemniscus			Sensory Cortex.			
	Lateral Geni	culate Nucl	eus	Optic tract			Vis	ual Cortex.		
	Medial Gen Nucleus	iculate		Lateral Lemniscus			Auditory Cortex.			

Limbi	Limbic System				
o It sep o It con hypoth 4 main 4 main These cerebr o The I	means "border" or "edge". The separates the medial surface of the cerebral cortex from the diencephalon to It consists of a number of cortical & subcortical structures with looped connections that all project to the hypothalamus. 4 main Function: Emotions, Memory, Visceral & Motor responses (pleasure), Olfaction. 4 main structure : Limbic cortex, Hippocampus "memory", Amygdala, Septal area. These structures form connections between the limbic system and the hypothalamus, thalamus and cerebral cortex. 5 The hippocampus is important in memory and learning, while the limbic system itself is important in the control of the emotional responses.				
		Structure			
Cortical structure	 I. Limbic lobe. C-shaped ring of grey matter surrounding the corpus callosum. It includes: Subcallosal area ,Cingulate gyrus Isthmus, Parahippocampal gyrus and the Uncus. It includes: Subcallosal area ,Cingulate gyrus Isthmus, Parahippocampal gyrus and the Uncus. Hippocampal formation. Septal areas (Fornix, connecting the hippocampus with mammillary bodies and septal nuclei). Prefrontal area (part of olfactory system). 				
Hippocampus	 o It is a horseshoe paired structure, one in each cerebral hemisphere. o SITE: inferomedial part of the temporal lobe. o FUNCTION: Formation, Organization, and Storage of memories. o It is important in forming new memories and connecting emotions and senses o It acts as a memory indexer by sending memories to the cerebral hemisphere for long-term storage and retrieving them when necessary. o The hippocampus & its connections are necessary for consolidation of new short-term memories. o Its principal efferent pathway is called the: FORNIX It is C-shaped group of fibers connecting the hippocampus with mammillary body. it consists of: 2 Fimbria, 2 Crus, 1 Body & 2 Column. 				
Amygdala	 The Fornix is an important component of PAPEZ CIRCUIT o SITE: almond shaped mass of nuclei that lies near the temporal pole, close to the tail of the caudate nucleus. o FUNCTION: Emotions, Fear, Anger and Hormonal secretions o LESION: Lack of emotional responses & docility o main connection: Inputs: Association areas of visual, auditory & somatosensory cortices. Outputs: Hypothalamus & Autonomic nuclei in the brain stem. 				
Septal area	o SITE: Located anterior to the int o FUNCTION: It is the pleasure zo o MAIN CONNECTIONS: 1. To P	-	ular nuclei		
	Korsakoff's psychosis (chronic memory disorder)	Temporal lobe epilepsy	Alzheimer's disease	Schizophrenia	
Lesions	Deficiency of thiamine (vitamin B-1) & alcoholic intoxication. Will lead to: 1- Retrograde :loss of new memories at the time of lesion with retained old memories 2- Anterograde amnesia : inability to gain new memories.	The hippocampus is a common focus site in epilepsy can be damaged through chronic seizures. *sometimes damaged in diseases such as" herpes encephalitis"	The hippocampus is one of the first brain areas to show damage in Alzheimer's disease. Anterograde amnesia: Inability to form and retain new memories	Mental disorder with inappropriate action and feeling	

Meninges and CSF

	CRANIAL MENINGES				
I	1. Dura (nnervation: trige	outermos minal, vag	•	1 – C3	
Periosteal layer	Menii	Meningeal layer (forms dural folds)			
(attached to skull)	Falx cerebri		Tentoriam cerebe		
	Vertical, sickle-shaped, extends into great longitudinal fissure above corpus callosum		cer cere	Horizontal, lies between erebral hemispheres and rebellum, separated from Ix cerebri by straight sinus	
Between dura and arachnoid: Subdural Space					
	2. Arachnoid	l mater (m	iddle)	
	Translucent, loos	ely envelo	opes l	orain	
Betwe	en arachnoid and	d pia: Suba	arach	noid Space	
Cisterna magna (he of the 4 th ve		Interpeduncular cisterna (at base of brain, contains optic chiasma and circle of willis)			
	3. Pia Mate	er (innerm	ost)		
Thin, delicate, hig	nly vascular, close	ly adhere	nt to ;	gyri and fitted into sulci	
	SPINAL (same as cranial	MENINGE with 2 dif		ces)	
1- epidura (between bone			_	ticulate ligament ects pia to dura)	
•		barachnoi id end at S		Pia →filum terminal → coccyx	
(Interesting (choroid plexus)	amen of Nonro rventricular oramen)	Cerebr Aquedu (of sylviu	lct	Fourth Ventricle (choroid plexus) Central Canal	
CSF	Sinus Sinus Derior Sagittal Sinus)	Subarac space	•	Foramen of Luschka & Magendie	

Introduction

Sensory input — Integration — Motor output

Classification:

- 1- Anatomical or Structural classification: CNS (in the dorsal body cavity) and PNS (outside the CNS)
- 2- Physiological or Functional classification: Sensory Division (afferent) and Motor Division (efferent)

Together with the endocrine system, the nervous system is responsible for regulating and maintaining homeostasis.

Two types of cells in the nervous tissue:

<u>1- Nerve cells or Neurons</u> (It is the basic structural (anatomical), functional and embryological unit of the nervous system.)
 <u>2- Supporting cells or Neuroglia</u> (glia) (NO role in information processing. they act as supporting and nutrition for neurons)

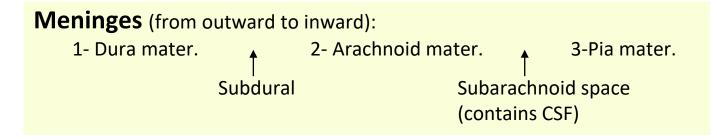
- The junction site of two neurons is called a "synapse or relay". In the synapses the membranes of adjacent cells are in close apposition (contiguity=contact, not continuity).
- Dendrites of Neurons function in receiving the information. Axons send the information away from the cell body. At the end of the axon, specializations called terminal buttons occur where information is transferred (neurotransmission) to the dendrites of other neurones.

Nucleus: A group of <u>neurons</u> within the CNS Ganglion: A group of <u>neurons</u> outside the CNS Tract: A group of nerve fibers (<u>axons</u>) within the CNS Nerve: A group of nerve fibers (<u>axons</u>) outside the CNS

Grey matter:

1- Cell bodies. 2- Processes of the neurons. 3- Neuroglia. 4- Blood Vessels. White matter:

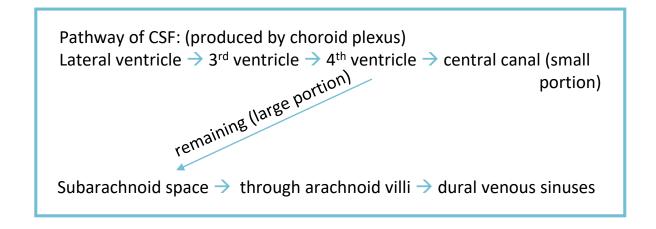
Same as Grey matter except it has NO cell bodies.


Sympathetic = Thoracolumbar outflow Parasympathetic = Craniosacral outflow.

Parts of brain:

- 1- Cerebral Hemispheres(largest part).
- 2- Diencephalon. 3- Brain stem. 4- Cerebellum

Cerebral hemispheres and cerebellum have an outer grey matter cortex and white matter inside.


Basal nuclei are gray matter that are located deep within the white matter in cerebral hemispheres. (Function? help the motor cortex in regulation of voluntary motor activities.)

Brain Ventricles (4 ventricles. Filled with CSF):

- 2 lateral ventricles: One in each hemisphere.
- 3rd ventricle: in the Diencephalon.
- 4th ventricle: between Pons, Medulla oblongata & Cerebellum.

Cerebral aqueduct (not a ventricle): connects the 3rd to the 4th ventricle.

Spinal Cord

Spinal meninges

- **1.Dura mater**: tough outer layer, continuous with epineurium of the spinal nerves
- 2.Arachnoid mater: thin membrane deeper to dura mater
- **3.Pia mater**: delicate membrane bound tightly to surface of brain and spinal cord and carries blood vessels.

Forms the filum terminale, which anchors spinal cord to coccyx and the denticulate ligaments that attach the spinal cord to the dura mater

Spinal segments:

1.8 Cervical 2.12 thoracic 3.5 lumbar 4.5 sacral 5.1 coccygeal

It has 2 enlargements:

Cervical enlargement: supplies upper limbs Lumbosacral enlargement: supplies lower limbs

- The bundle of spinal nerves at the end of the spinal cord is called cauda equina.
- Grey matter consists of nerve cell bodies and their processes, neuroglia, and blood vessels
- The nerve cells are <u>multipolar</u> and are of **three** main categories:

Sensory neurons	receive impulses from the periphery of the body. Its axons constitute the ascending fasciculi of the white matter, are located in the Dorsal horns.
Lower motor neurons	transmit impulses to the skeletal muscles, are located in the ventral horns
Interneurons	Link sensory and motor neurons, at same or different levels, which form spinal reflex arcs.

Dorsal horn has 4 nerve cell groups:

Cell group	location	numeration	Description	function
Substantia gelatinosa	Located at the apex of the posterior horn	Rexed Laminae II	 large neurons Extends through out the length of spinal cord 	pain, temperature.
Nucleus proprius	Located anterior to substantia gelatinosa	Rexed Lamina IV	 <u>large</u> neurons Extends through out the length of spinal cord 	(proprioception) and two point discrimiation & vibration)
Nucleus dorsalis (Clark's column, nucleus thoracis)	Located at the base of dorsal horn	Rexed Lamina VII	 <u>large</u> neurons from <i>C8 to L3-</i> 4 	information from muscle spindles and tendon organs.
Visceral afferent nucleus	Located lateral to nucleus dorsalis	Rexed Lamina VII	 <u>medium</u> size neurons Extends from <i>T1 to</i> <i>L3</i> segments 	Visceral afferents

Ventral horn has 2 cell groups

1.Motor neurons:

1)Large multipolar cells

Numerous, Axons pass out in the ventral roots of spinal nerves as alpha efferents,

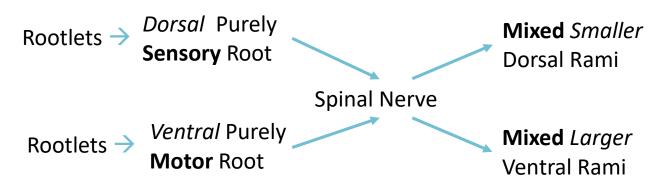
Innervate extrafusal muscle fibers

2)Smaller multipolar cells

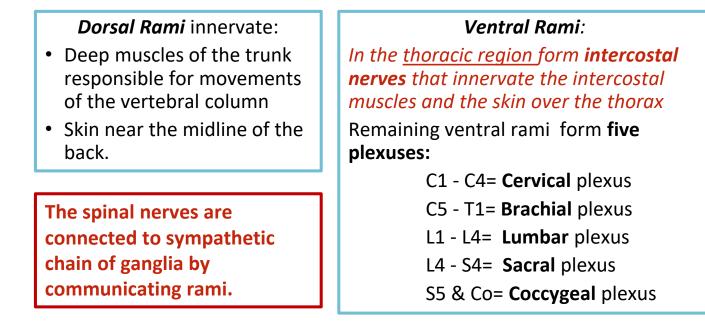
Less numerous, Axons pass out in the ventral roots of spinal nerves as **gamma** efferents, Innervate **intrafusal muscle fibers** of neuromuscular spindles

2.Interneurons, the (**Renshaw cells**), whose branched axons form **inhibitory** synaptic junctions on motor neurons

Lateral horn is a small column composed of small neurons that extend from:

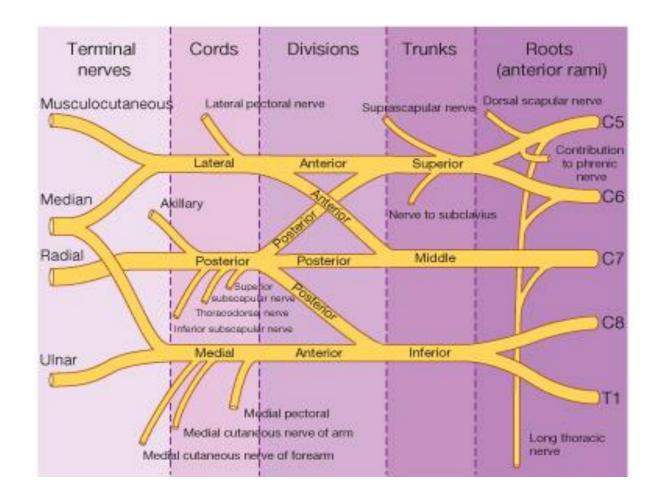

- **T1 to L2-3** segments, give rise to pre-ganglionic sympathetic fibers
- S2-4 segments, give rise to preganglionic parasympathetic fibers

White matter Consists of mixture of <u>nerve fibers</u>, <u>neuroglia</u> and <u>blood vessels</u>.


- White color is due to high proportion of myelinated nerve fibers.
- Arranged in columns **anterior**, **posterior** and **lateral**.
- The nerve fibers are arranged as bundles, running vertically through the cord. A group of nerve fibers that share a common origin, termination and function form a **tract** or **fasciculus**
- The **amount of white matter** increases in a caudal-to-cranial direction because fibers are added to ascending tracts
- The gray matter is increased in volume in <u>cervical & lumbosacral</u> <u>enlargements</u> for innervation of upper & lower limbs.

Spinal nerves

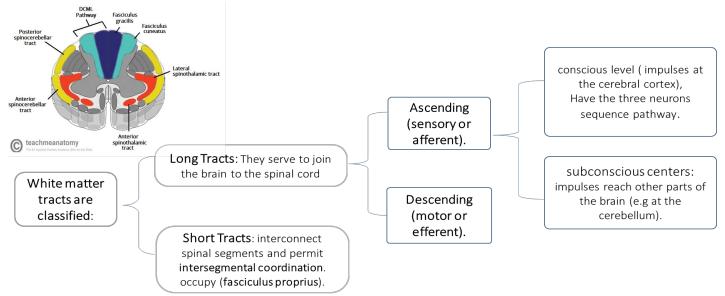
- There are Thirty-one pairs of spinal nerves.
- **Eight** pair cervical, **twelve** pair thoracic, **five** pair lumbar, **five** pair sacral, **one** pair coccygeal



 Dorsal root has a ganglion (dorsal root/sensory ganglion) that contains the cell bodies of the sensory neurons.

Brachial Plexus & Lumbosacral Plexus

	Brachial Plexus	Lumbar plexus	Sacral Plexus
Stages	Read The Details Carefully Roots, Trunk, Divisions, Cords.	-	-
Roots (by ventral rami)	C5, C6, C7, C8 and T1.	L1,L2, L3 and most of L4.	L4 (part), L5 (Lumbosacral Trunk) + S1, S2, S3 and most of S4.
Site	Posterior of the neck \rightarrow Behind clavicle \rightarrow Axilla	In psoas major muscle	In front of piriformis muscle
Trunks	Upper Trunk= union of C5, C6. Middle Trunk = continuation of C7. Lower Trunk = union of C8, T1. Each trunk divides into anterior and posterior division.	-	-
Branches	 Lateral Cord : Lateral root of median n. Musculocutaneous nerve. Posterior cord: Axillary nerve. Radial nerve. Medial Cord: Ulnar nerve. Median root of median n. 	 L1 (to anterior abdominal wall): Iliohypogastric n. Ilioinguinal n. L2, L3 & L4: Obturator (to medial compartment of thigh). Femoral (to anterior compartment of thigh). 	 Pelvic splanchnic n. Pudendal n. Sciatic n.
Injuries	 Upper trunk C5, C6: Waiter's tip (Erb- Duchenne Palsy). Lower trunk C8, T1 : Klumpke Palsy Median nerve = Ape hand (Pop's Blessings). Ulnar nerve = Claw hand. 	 Femoral nerve injury <u>Motor effect</u> Wasting of quadriceps femoris. Loss of extension of knee Weak flexion of hip <u>Sensory effect:</u> Loss of sensation of 1- anteromedial aspect of thigh. 2- medial side of leg and foot. 	Sciatic nerve Injury will affect the flexion of knee, extension o f hip, all movements of leg & foot, as well as loss of sensation of skin of leg and foot (except areas supplied by saphenous branch of femoral nerve).


Sciatic nerve:

- Origin: sacral plexus (L4, L5, S1, S2& S3)
- It divides into tibial & common peroneal (fibular) nerves .

Ascending Sensory Tracts

White matter

- The white matter of the spinal cord consists of Ascending and Descending Nerve Fibers.
- o It is divided into Dorsal, Lateral & Ventral Columns or Funiculi

Sensory Pathways

1- Do	1- Dorsal column						
Fur	Function Carry impulses concerned with proprioception and discriminative. (conscious sensation)						
Fasciculus Gracilis contains fibTypes/Tractsreceived at sacral, lumbar and thoracic levels							
1 st order ascend until it terminates upon 2nd order neurons in nucleus gracilis and nucleus neurons cuneatus							
Pathway	2 nd order neurons	decussate in the medulla as <u>inte</u> as <u>Medial Lemniscus</u> .	Contraction signs Contraction signs Contraction Contraction				
	3 rd order neurons	medial lemniscus terminates in the ventral posterior nucleus of the thalamus (3rd order neurons), which project to the somatosensory cortex (thalamocortical fibers)				Promotion of the second s	
		Tabes Dorsalis A late manifestation of	Subacute Cospinal cord	ombined Degeneration of the	Multiple	e Sclerosis	
Le	sions	syphilitic infection on the CNS. Leads to loss of proprioception which is manifested by a high	-A systemic deficiency	-A systemic disease results from B12 fa		An immune disease affects specifically fasciculus Cuneatus of the cervical region.	
		Step Page and unsteady gait	-It produces	s <u>Sensory Ataxia</u>		ads to loss of proprioception in hands	
		(sensory ataxia)		umns are also affected (combined) ak and spastic limbs	and fingers (Asteriognosis)		

2- 5	2- Spinothalamic (anterolateral) Tracts					
I	Function	Carry impulses concerned with; pain and thermal sensations , and nondiscriminative/crude touch and pressure to the cerebral cortex . (conscious sensation)				
Types/Tracts		Lateral Spinothalamic Tract: Carries pain & Temperature.	Anterior Spinothalamic Tract Carries crude touch (non discriminative) & pressure.	1 ^o Benergian Wender Legendaria		
	1 st order neurons	Small cells in the dorsal root ganglia.	Medium sized cells in the dorsal root ganglia.			
Pathway	2 nd order neurons	Cells of substantia gelatinosa of Rolandi (contralater) in the posterior horn.	Cells of main sensory nucleus or (nucleus proprius).	Forst		
	3 rd order neurons	Cells of (ventral posterior) nucleus of the thalamus.	Cells of ventral posterior nucleus of thalamus	Carvist and		
 -In brain stem, the two tracts constitute the Spinal Lemniscus -Fibers arising from Substantia Gelatinosa (lateral) & Nucleus Proprius (anterior) decussate in the Anterior White Commissar 			ate in the Anterior White			
Syringomyelia- The central canal becomes enlarged forming a cavity compressing the adjacent nerve fibres- Fibres serving pain and temperature (lateral spinothalamic) are damaged as they decussate in the ventral white commissure close to the central canal causing selective loss of pain and temperature in the upper limbs - Joints of the limbs become disorganized without discomfort (Charcot's joint)			sate in the ventral white			

Sensory Pathways

3-Spinocerebellar Tracts							
functi	function Carry information derived from muscle spindles, Golgi tendon and tactile receptors to the cerebellum for the control of posture and coordination of movements (subconscious sensations)						
types/tracts		Dorsal (<i>uncrossed</i>) : Present only above level L3	Ventral (crossed)				
	1 st order neurons	Large cells of dorsal root ganglia					
Pathway	2 nd order neurons	cell bodies of 2nd order neuron lie in Clark's column and the Axons of 2nd order neuron terminate ipsilaterally (<u>uncrossed</u>) in the cerebellar cortex	- The cell bodies of 2nd order neuron lie in base of the dorsal horn of the lumbosacral segments - Axons of 2nd order neuron <u>cross</u> to opposite side, ascend to the midbrain, and then make a sharp turn caudally (the fibers cross the midline for the second time) and enter the superior cerebellar peduncle to terminate in the cerebellar cortex				
		They both convey information to the same side					
lesions		 Friedrichs ataxia An inherited degenerated disease Affecting the spinocerebellar tracts Leading to incoordination of arms, intense tremor, wide base reeling gait ataxia It begins in child hood and become Wheelchair is bound by 20 years of age 					

		4- Spinotectal Tract	5-Spino-olivary Tract	6- Spinoreticular Tract
f	unction	Involved in reflexive turning of the head and eyes toward a point of cutaneous stimulation		Involved in perception of dull aching (slow pain) -(conscious)
	1 st order neurons	Primary afferents reach dorsal horn through dorsal roots and terminate on 2nd order neurons	Indirect spinocerebellar pathway. Carries sensation to the cerebellum (unconscious) Contribute to movement coordination associated primarily with balance.	 Originates in the dorsal horn, and ascend in the ventrolateral region of the cord
Pathway	2 nd order neurons	 The cell bodies of 2nd order neuron lie in base of the dorsal horn. Axons of 2nd order neuron cross to opposite side, and project to the periaquiductal gray matter and superior colliculus in the midbrain. 	 Impulses from the spinal cord are relayed to the cerebellum via inferior olivary nucleus Fibers arise at <u>all levels</u> of the spinal cord. 	 Contains uncrossed fibers that end in medullary reticular formation & both crossed & uncrossed fibers that terminate in pontine reticular formation, finally to the thalamus; that activate the cerebral cortex Forms part of the ascending reticular activating system

Brain Stem (External Features)

- Brainstem is composed (from above downwards) of: midbrain, pons & medulla oblongata.
- Continuous with diencephalon above & with spinal cord below.
- Connected with cerebellum through cerebellar peduncles.
- Contains **reticular formation (**groups of nuclei & fibers**)** responsible for: control of level of *consciousness, perception of pain, regulation of* **cardiovascular** & **respiratory** *systems*.
- the site of:
 - (1) cranial nuclei
 - (2) pathway of ascending & descending tracts
 - (3) emergence of cranial nerves (from 3rd to 12th).

	Medulla Oblongata	Pons	Midbrain
Ventral Surface	 Ventral median fissure Pyramid (elevation produced by corticospinal tract) Olive (elevation produced by inferior olivary nucleus) Nerves emerging from Medulla: (12th): sulcus between pyramid & olive (9th), (10th) & (11th) sulcus dorsolateral to olive 	 1- Basilar sulcus 2- Transverse pontine (pontocerebellar) fibers 3- Nerves emerging from pons: (5th) (6th): between pons & pyramid (7th) & (8th): junction between medulla, pons & cerebellum 	 1- crus cerebri (large descending fibers) 2- inter-peduncular fossa 3- Nerve emerging from midbrain: - (3th)
Dorsal Surface	 1- caudal part (closed medulla): Fasciculus gracilis + Gracile tubercle Fasciculus cuneatus + Cuneate tubercle 2- cranial part (open medulla): 1- Hypoglossal triangle: hypoglossal nucleus. 2- Vagal triangle: dorsal vagal nucleus. 3- Vestibular area: vestibular nuclei. 	 1- median sulcus 2- Medial eminence & facial colliculus: abducent nucleus 3- Vestibular area: vestibular nuclei. 	 1- 4 elevations: Two superior colliculi: visual reflexes. Two inferior colliculi: auditory pathway 2- Nerve emerging from Midbrain: - (4th)

Brain Stem (Internal Structures)

	Medulla oblongata					
Parts	Structures	Nucleus	Fibers	image		
Open (rostral) Medulla	 floor of the 4th ventricle. Inferior Cerebellar Peduncle 	2- Spinal nucleus of trigeminal nerve 3- Inferior olivary nucleus	7-Medial longitudinal fasciculus: Links vestibula nuclei above (with nuclei of extraocular muscles 3, 4 & 6) and below (with anterior horn cells of cervical and upper thoracic) 8-Tectospinal tract :	Heiser mediliny view Heiser mediliny view Density and receive Density		
ulla	N. to Ms. of the pharynx, larynx & palate.		between tectum of midbrain and spinal cord (involved in head movements during visual and auditory tracking).	Retoren tool Hedai lemicoa Acquire hodel		
Mid Medulla	 Central Canal Sensory decussation 	2- Large size Gracile nuclei 3- Large size Cuneate nuclei	4- Axons of Gracile & Cuneate nuclei form the internal arcuate fibers: Sensory Decussation 5-Pyramids 6- Medial Lemniscus	Resolution (Resolution)		
Closed (Caudal) Medulla	 Central Canal Motor Decussation 	1- Spinal Nucleus of Trigeminal nerve (continuation of the Substantia Gelatinosa): It receives pain and temperature from face and forehead.	 2-Spinal tract of the trigeminal 3-pyramidal fibers: 1)(75-90%) lateral corticospinal tract. Forming motor decussation 2)(10-25%) anterior corticospinal tract. 	Parsonal Par		

	Pons							
Parts	Structures	Nucleus + special structures	Fibers	image				
Rostral pons	- Divided into an anterior part (Basis Pontis) & a posterior part (Tegmentum) by the Trapezoid Body	Superior Medullary Velum	1- Medial longitudinal fasciculus	The transmitter tr				
Level of Trigeminal Nerve	The ventral portion contain: pontocerebellar (transvers) fibres from pontine nuclei and that pass to the <i>contralateral</i> <i>side</i> of the <u>cerebellum</u> through the massive	 Motor nucleus of the trigeminal nerve. Main sensory nucleus of the trigeminal nerve. Superior cerebellar peduncles : form the lateral boundary of the 4th ventricle 		Notes ingression through the poor and level of the ingression				
Caudal pons	middle cerebellar peduncle -cavity of the 4th ventricle	 Pontine Nuclei: receive cortico pontine fibers, and Their axons form the transverse pontocerebellar fibers. Spinal Nucleus of Trigeminal nerve Abducent nucleus Facial motor nucleus 	 5-Bundles of corticospinal & corticonuclear fibres (Pyramidal fibres) 6- Spinal tract of the trigeminal 7- medial lemniscus: separates from the pyramid and displace ,rotates 90 degrees and lies almost horizontally 	Sever reading values				

		Midbrain				
Parts	Structures	Nucleus Fibers				
Superior Colliculus Inferi Level	 It is divided at the level of the cerebral aqueduct into : dorsal part (Tectum) ventral part (Tegmentum) The cerebral aqueduct is surrounded by a pear shaped periaqueductal (central) gray matter. Crus Cerebri It is a massive mass ventral to the substantia nigra. 	 Superior colliculus nuclei :A large nucleus of gray elevation.(visual) Oculomotor nucleus Red nucleus : red coloration is due to its vascularity and the pr cytoplasm of its neurons. It is involved in motor control. Inferior colliculus is a large nucleus of gray matter that lies beneath a corresponding surface 			Sector and Aller	
Inferior Colliculus Level	It consists of descending cortical efferent fibers, (Frontopontine, Corticospinal & corticobulbar and Temporopontine Fibres) to the motor cranial nerve nuclei and to anterior horn cells. Involved in the coordination of movement.	 active that lies beneath a corresponding surface elevation.(<i>auditory</i>) 2- Trochlear nucleus: The fibers of the trochlear nerve decussate in the <i>superior medullary velum</i>. Decussation of the superior cerebellar peduncles in the mid line 	degenerat disease. 4 Ascendi Compose - Me - Spi spin - Trig	to the basal ganglia. Its ion is associated with Parkinson's ng Leminisci: d Of: dial lemniscus. nal (Lateral & anterior othalamic tracts) eminal (Lateral & medial). eral lemniscus.	Second operating the second op	

Reticular Formation

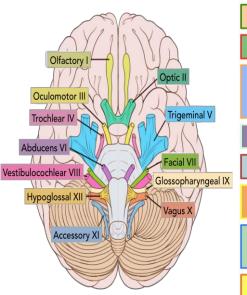
It is a complex matrix of nerve fibers & small groups of nerve cells that extends throughout the brain stem. It has a number of important functions i.e. **Respiratory** and **Cardio- vascular centers** are located in the medullary and caudal pontine reticular formation.

	, , , , , , , , , , , , , , , , , , , ,
Reticular Tract:-	Reticular Neurons
-Reticulospinal tracts:	-Raphe Nuclei:
Influence a muscle tone & posture	Midline reticular nuclei., They are serotonergic. Its ascending fibers to the cerebral cortex are involved in the mechanisms of sleep.
-Reticular Activating system:	Its descending fibers to the spinal cord are involved in the modulation of Pain.
Formed of some of the ascending fibers of the reticular formation.	-Locus Ceruleus:
They activate the cerebral cortex through the thalamus.	Pigmented neurons that lie in the tegmentum of the caudal midbrain & rostral pons
	It is the main noradrenergic cell group of the brain., Helps in arousal and sleep-wake cycles

	VAGUS NUCLEUS (dorsal moto) HYPOGLOSSAL NUCLEUS Vagus (X) nerve		
Motor (Pyramidal)	Corticospinal tract	Caudal medulla	INFERICION OLIVARY NUCLEUS Hypoglossal (XII) nerve DECUSSATION OF PYRAMIDS
Sensory	Internal arcuate fibers (after crossing form medial lemniscus)	Mid medulla	Lateral corticospinal tract fibers Spinal nerve C1 Anterior conticospinal tract fibers Spinal cord Transverse section and anterior surface of medulla oblongata

Lemnisci					
Medial	Ascending internal arcuate fibers after crossing	Terminate in thalamus			
Lateral	Acoustic fibers from cochlear nuclei	Terminate in inferior colliculus (then efferents of inferior colliculus pass to thalamus)			
Spinal	Spinothalamic tracts (lateral and anterior)				

Cranial Nerves


Cranial nerve Co		Common and	Churchange in a marked	Control connections	Functions
Crania	ai nerve	Component fibres	Structures innervated	Central connections	Functions
T	Olfactory	Sensory	Olfactory epithelium	Olfactory bulb	Olfaction
11	Optic	Sensory	Retina	Lateral geniculate nucleus; pretectal nucleus	Vision; pupillary light reflex
Ш	Oculomotor	Motor	Superior, inferior and medial rectus muscles; inferior oblique muscle; levator palpebrae superioris muscle	Oculomotor nucleus	Movement of eyeball; elevation of upper eyelid
		Parasympathetic	Sphincter pupillae and ciliary muscle of the eyeball, via ciliary ganglion	Edinger–Westphal nucleus	Pupillary constriction and accommodation
IV	Trochlear	Motor	Superior oblique muscle	Trochlear nucleus	Movement of eyeball
V	Trigeminal	Sensory	Face, scalp, cornea, nasal and oral cavities, cranial dura mater	Trigeminal sensory nucleus	General sensation
		Motor	Muscles of mastication; tensor tympani	Trigeminal motor nucleus	Opening and closing mouth; tension on tympanic membrane
VI	Abducens	Motor	Lateral rectus muscle	Abducens nucleus	Movement of eyeball
VII	Facial	Sensory	Anterior two-thirds of tongue	Nucleus solitarius	Taste
		Motor	Muscles of facial expression; stapedius muscle	Facial nucleus	Facial movement; tension on bones of middle ear
		Parasympathetic	Salivary and lacrimal glands, via submandibular and pterygopalatine ganglia	Superior salivatory nucleus	Salivation and lacrimation
VIII	Vestibulocochlear	Sensory	Vestibular apparatus; cochlea	Vestibular nuclei; cochlear nuclei	Vestibular sensation (position and movement of head); hearing
IX	Glossopharyngeal	Sensory	Pharynx, posterior third of tongue, Eustachian tube, middle ear	Trigeminal sensory nucleus	General sensation
			Posterior third of tongue; carotid body, carotid sinus	Nucleus solitarius	Taste; chemoreception, baroreception
		Motor	Stylopharyngeus muscle	Nucleus ambiguus	Swallowing
		Parasympathetic	Parotid salivary gland, via otic ganglion	Inferior salivatory nucleus	Salivation
×	Vagus	Sensory	Pharynx, larynx, trachea, oesophagus, external ear	Trigeminal sensory nucleus	General sensation
			Thoracic and abdominal viscera; aortic bodies, aortic arch	Nucleus solitarius	Visceral sensation; chemoreception, baroreception
		Motor	Soft palate, pharynx, larynx, upper oesophagus	Nucleus ambiguus	Speech, swallowing
		Parasympathetic	Thoracic and abdominal viscera	Dorsal motor nucleus of vagus	Innervation of cardiac muscle. Innervation of smooth muscle and glands of cardiovascular system, respiratory and gastrointestinal tracts
XI	Accessory (spinal roots)	Motor	Sternomastoid and trapezius muscles	Spinal cord	Movement of head and shoulder

Exit from Brain Stem Midbrain (medial aspect of crus 3 cerebri) Midbrain (caudal to inferior 4 colliculus) 5 Pons (ventrolateral) Pons (junction b/w pons & 6 pyramid) Pons (cerebellopontine angle: 7 between medulla pons and 8 cerebellum) 9 Medulla (sulcus dorsolateral to 10 olive) 11 Medulla (sulcus b/w pyramid & 12 olive)

Motor

XII

Hypoglossal

Intrinsic and extrinsic muscles of tongue

Jugular foramen Glosopharyngeal n (CNIX) Vagus n (CNX)

Accessory n (CNXI) Hypoglossal canal Hypoglossal n (CNXII)

Hypoglossal nucleus

Movement of tongue

Cranial Nerve 1 + Nose

Nasal cavity:

Floor (nasal surface of hard palate, palatine process of maxilla, horizontal plate of palatine bone)

Roof (body of sphenoid, cribriform plate of ethmoid, frontal, and nasal bones) **Medial wall**/nasal septum (vertical plate of ethmoid, septal cartilage, vomer) **Lateral wall** (3 conchae, 3 meatus, sphenoethmoidal recess)

Parasinuses: maxilla , frontal bone, sphenoid bone, ethmoid bone <u>Function</u>:

1- lighten the skull weight
 2- amplify the sound as we speak
 Note : all sinuses open into the
 middle meatus EXCEPT:

Sphenoidal sinus : in sphenoethmoidal recess. *Posterior ethmoidal sinus* : in superior meatus. Olfactory mucosa: present in the <u>upper</u> part of nasal cavity **Respiratory mucosa**: It lines the <u>lower</u> part of the nasal cavity (from skin of *vestibule* to the *superior concha*).

Nerve supply of nasal cavity: (general sensation)

Anterio part: anterior ethmoidal Posterior part: nasopalatine, nasal, palatine (they are all branches of pterygopalatine ganglion)

Olfactory nerve (CN1): nerve of special sensation

<u>1st neuron</u>: ciliated nerve cells in **olfactory epithelium**, axons of ciliated **bipolar nerve cells** join to form olfactory nerve fibers and they join the **olfactory bulb** <u>2nd neuron</u>: It is formed by the **Mitral cells** of olfactory bulb and axons of which
 form **olfactory tract**. Each tract will dived into:

1- <u>lateral root</u>: Carries olfactory fibers to end in **cortex of the Uncus & adjacent part of Hippocampal gyrus** (center of smell).

2- <u>medial root</u>: crosses the midline and joins the lateral root of the opposite side
to connect the 2 cerebral hemisphere so each olfactory center receive smell
sensation from both halves. (olfactory only sense does not pass through thalamus)

Arterial supply:

<u>Sphenopalatine</u> artery (branch of maxillary) .

Anterior and Posterior Ethmoidal (branch of ophthalmic). Superior labial (branch of facial). Little's area: at the anterior and inferior part of nasal septum full of anastomosis and common site for epistaxis

Venous drainage:

Venous plexus in the sub mucosa formed by veins accompanying the arteries

They drain into <u>cavernous sinus</u> & <u>pterygoid venous plexus</u>.

Lymphatic drainage:

<u>Submandibular</u> & <u>Upper deep cervical</u> nodes.

Cranial Nerves 2, 3, 4 & 6

Occulomotor nerve (3)

Туре	Motor : for all extra ocular muscles <u>except</u> Lateral Rectus (CN 6) + Superior oblique (CN 4) Preganglionic parasympathetic fibers
Nuclei	1- Main occulomotor nucleus 2- Accessory nucleus (Edinger-Westphal nucleus). Level of the nuclei : Mid brain superior colliculus
Receives	Corticonuclear fibers: accommodation reflex Pretectal nucleus : pupillary reflexes
Supplies	Superior, Inferior, Medial Rectus+Levator Palpebrae Superioris +Inferior Oblique / Parasympathatic : pupillary constrictor + ciliary muscles
Action	Elevation of upper eyelid Turning the eyeball upward, downward, medially
Pathway	Fibers of oculomotor nucleus passes through red nucleus(without synapses) \rightarrow interpeduncular fossa \rightarrow middle cranial fossa \rightarrow lateral wall of the cavernous sinus \rightarrow superior orbital fissure. Preganglionic fibers of Edinger-Westphal nucleus has the same pathway but terminate in <u>ciliary ganglion</u> \rightarrow short ciliary nerves \rightarrow eyeball where it supply constrictor pupillae + ciliary muscles .
Lesion	Lateral squint , Ptosis , Pupillary dilatation , loss of accommodation Parasympathetic fibers affected before motor fibers.

Trochlear nerve (4)

Туре	Motor: to <u>Superior Oblique</u> muscle
Nuclei	Small motor nucleus at the level of inferior colliculus.
Action	Rotate the eyeball downward and laterally.
pathway	From dorsal surface of brainstem \rightarrow forward to middle cranial fossa \rightarrow Lateral to cavernous sinus \rightarrow superior orbital fissure .

Abducent nerve (6)

Туре	Motor : to <u>Lateral Rectus</u> muscle.
Nuclei	One motor nucleus. Level of caudal pons in floor of 4 ventricle.
Action	Abduction (rotate the eyeball laterally).
pathway	from Ventral aspect \rightarrow cavernous sinus \rightarrow superior orbital fissure. # It forms the <u>facial colliculus</u>
Lesion	Medial squint . <u>If nuclear lesion</u> : Facial nerve manifestations may appear.

Optic nerve (2)

Туре	Special sensory. Function: vision
3 neurons pathway	1st order neuron: bipolar cells of the retina → 2nd order neuron: ganglion cells of the retina → 3rd order neuron: Lateral geniculate body (nucleus).
Visual pathway	optic nerve exits from optic canal \rightarrow middle cranial fossa \rightarrow optic chiasma \rightarrow optic tracts \rightarrow lateral geniculate body \rightarrow optic radiation \rightarrow visual cortex (calcarine sulcus.
Visual field	right visual field ~ left optic tract ~ Left temporal + Right nasal fibers Left visual field ~ right optic tract ~ Right temporal + left nasal fibers
Lesion (visual field deficits)	 Diseases of the optic nerve and eyeball like cataract, intraocular hemorrhage, retinal detachment MS and nerve tumor → monocular blindness. Compression of the optic chiasm (pituitary gland tumor) → bitemporal hemianopia Vascular or neoplastic lesions of the optic tract, occipital cortex and optic radiation → homonymous hemianopia

Cranial Nerves 5 & 7

	aanaliaa	fibore	nuclai	branchas	locion
	ganglion Trigeminal	fibers GSA	nuclei -Mesencephalic	branches 1. Ophthalmic nerve	lesion Trigeminal
(mixed)		(Carrying	nucleus:	(PURE SENSORY):	Neuralgia:
(mixeu)	Site:	general	(midbrain	All supply skin of	This condition is
	Occupies a	sensations	&pons): receives	face .	characterized by
	depression	from face ,	proprioceptive	1. Frontal: scalp.	recurring episodes of
	in the	and anterior	fibers from	2. Lacrimal : lacrimal	intense stabbing
	middle	part of	muscles of	gland.	excruciating pain
	cranial	scalp.)	mastication.	3. Nasociliary : nasal	radiating from the
	fossa.	Scalp./	-Principal (main)	cavity & eyeball.	angle of the jaw
				2. Maxillary nerve (PURE	along a branches of
			(pons): receives	<u>SENSORY</u>):	the trigeminal nerve
			<i>touch</i> fibers from	1. Upper teeth, gums &	, due to
			face & scalp	maxillary air sinus	Compression,
			-Spinal nucleus	(posterior, middle &	degeneration or
			:(pons, medulla	anterior superior	<i>inflammation</i> of the
			& upper 2-3	alveolar nerves).	nerve
			cervical	2. Face:	
			segments of	(zygomaticofacial &	
			spinal cord):	infraorbital nerves).	
			receives pain &	Mandibular (mixed) :	
			temperature	- Sensory Branches	
			sensations from	- Lingual:	
			face & scalp.	<u>receives</u> General	
				sensations from	
				anterior 2/3 the of	
				tongue.	
				- Inferior alveolar:	
				<u>supplies</u> Lower teeth, gums & face.	
				- Buccal:	
				supplies Face	
				(cheek on upper jaw)	
				- Auriculotemporal:	
				<u>supplies</u> auricle,	
				temple, parotid gland	
				& TMJ	
		0.17			
		SVE	Motor nucleus	- Motor Branches of	-
		(Supplying	(pons): supplies:	mandibular : to 8 muscles (4 muscles of	
		muscles	Four Muscles of	muscles (4 muscles 0) mastication & other 4	
		developed	mastication	muscles).	
		from the 1st	(temporalis, masseter, medial &	mascresy.	
		pharyngeal	lateral pterygoid).		
		arch, (8	Other four		
		muscles)	muscles (anterior		
			belly of digastric,		
			mylohyoid, tensor		
			palati, &tensor		
			tympani)		

Nerve	Fibers	nuclei	function	branches	lesion
Facial : Mixed (Motor, special sensory,	GVE	superior salivatory nucleus	sends preganglionic parasympathetic secretory fibers	In facial canal : 1-Greater petrosal nerve:	Bell's Palsy (LMN lesion) : Damage of the facial
parasympathetic)	SVE	motor nucleus of facial nerve	supplies: Muscles of the face, Muscles of scalp, (Occipitofrontalis). Muscles of the auricle. Posterior belly of digastric, Platysma, Stylohyoid, Stapedius,	carries preganglionic	nerve results in paralysis of muscles of facial expressions . Drooping of lower eyelid, Sagging of mouth angle, Dribbling of saliva, Loss of facial expressions, chewing, blowing, sucking,
	SVA	nucleus solitarius	receives taste from the anterior 2/3 of tongue.	fibers to submandibular & sublingual glands. b) taste fibers from anterior 2/3 of tongue. 3. Nerve to stapedius: control the amplitude of sound waves from the external environment to the inner ear. -As it emerges from the stylomastoid foramen : 1. Posterior auricular: to occipitofrontalis muscle. <i>2. Muscular branches</i> <i>to:</i> Stylohyoid , posterior belly of digastric -Inside parotid gland: gives 5 motor to the muscles of the face: temporal , zygomatic , buccal , mandibular , cervical .	Unable to show teeth or close the eye <u>on</u> <u>that side</u> .

Cranial Nerve 8 + Ear

	PART	FUNCTION	NERVE SUPPLY	
EXTERNAL EAR	-auricle	collects air vibrations	Sensation is carried by great	
		• receives the insertion of extrinsic	auricular & auriculotemporal	
		muscles, which are supplied by the	nerves.	
		facial nerve.		
	- external auditory meatus.	conducts & collects sound waves		
		from the auricle to the tympanic		
		membrane. Its outer 1/3rd is		
		elastic cartilage, while its inner		
		2/3rds are boney.		
		• its outer 1/3rd is provided with		
		hairs, sebaceous and Ceruminous		
		Glands		
MIDDLE EAR	- in the petrous temporal bone.	• lined with mucous membrane.	*Tympanic nerve: It is a	
(Tympanic Cavity)	- auditory ossicles	• which transmit the vibrations of	branch of the	
	1. Malleus	the tympanic membrane	glossopharyngeal:	
	2. Incus	(eardrum) to the internal ear.	- Tympanic plexus	
	3. Stapes		- Lesser petrosal.	
	- Auditory Tube	Communicates the middle ear	- supply to the parotid gland.	
		anteriorly with the Nasopharynx.	* Facial nerve:	
		• The posterior 1/3rd of the canal is	- Greater Petrosal nerve.	
		bony, and its anterior 2/3rds are	- Nerve to Stapedius.	
		cartilaginous.	- Chorda Tympani.	
		• equalize the pressure on both		
		sides of the ear drum.		
	The middle ear has:		Nerve supply of ear drum:	
	 Roof: tegmen tympani, Floor: formed by a thin plate of bone separates it from internal jugular v. -4 walls: 1. Anterior: canal for the tensor tympani muscle, auditory tube. 2. Posterior: aditus to the mastoid antrum, the pyramid. 		Outer surface:	
			- Auriculotemporal nerve	
			Auricular branch of vagus.	
			 Inner surface: Tympanic branch of the 	
 Lateral: tympanic membrane. Medial: Promontory, Fenestra Vestibution 		Vastikuli Fanastra Cashlaga	glossopharyngeal nerve.	
	4. Medial. Promonitory, renestra	vestibuli, reflestra cochieae.	giossopharyngear herve.	
	Muscles of the Ossicles	- TENSOR TYMPANI	Mandibular nerve.	
	De au la huriath	- STAPEDIUS	Facial nerve.	
INTERNAL EAR	Bony labyrinth	-contain a clear fluid, the perilymph, in wh	-	
(Labyrinth)		membranous labyrinth, consists of: • Coch		
	Membranous labyrinth	 Semicircular canals(has a swelling at one -series of membranous sacs and ducts wit 	-	
		filled with endolymph (Four ducts & Two s	-	
		-Sacs: Utricle & Saccule lodged in the bony		
		(In their walls located specialized sensory to the orientation of the head to gravity or	-	
			-	
		-Ducts: Three semicircular ducts lie within the bony semicircular canals. (The utricle, saccule and semicircular ducts are concerned with		
		maintenance of Equilibrium.)		
			22	
		-Cochlear Duct: lies within the bony cochlea. The highly specialized epithelium on the floor of cochlear duct forms the		
		Spiral organ of Corti that contains the sense		
		Spiral organ of Corti that contains the sens	bory receptors for frediling.	

Vestibulocochlear Nerve

Type: special Sensory Afferent (SSA)

Origin: ventral surface of brainstem through the cerebellopontine angle

Course: run laterally in posterior cranial fossa and enter the internal acoustic meatus along with 7th

Vestibular Part

conveys impulses associated with body posture, balance and coordination of head & eye movements

	Afferent	Efferent	
1 st Order Neurons are located in the vestibular ganglion within the internal auditory meatus.		From the vestibular nuclei project: 1- To ipsilateral flocculonodular lobe of	
Peripheral Processes (vestibular nerve fibers) make dendritic contact with hair cells of the	Central Processes (form the vestibular nerve) 1- Mostly end up in the lateral, medial, inferior and superior vestibular nuclei (2nd order neurons) of the rostral medulla, located beneath the lateral part of the floor of 4th ventricle	 cerebellum (vestibulo- cerebellar tract) through inferior cerebellar peduncle 2- Bilaterally to ventral posterior nucleus of thalamus, which in turn project to the cerebral cortex 3- Bilaterally to motor nuclei of cranial nerves (vestibulo- ocular tract) through MLF 4- To Motor neurons of the spinal cord 	
membranous labyrinth (inner ear)	2- Some fibers go to the cerebellum through the inferior cerebellar peduncle	as lateral (ipsilateral) directly & medial vestibulospinal (bilateral) tracts through MLF	

Medial Longitudinal Fasciculus

Extends throughout the brain stem. Projects bilaterally

Ascending Vestibulo-Ocular

establishes connections with the nuclei of the Oculomotor, Trochlear & Abducent nerves (motor nuclei for extraocular muscles) for coordination of head & eye movements.

Descending Vestibulo-Spinal

extends into the spinal cord as the medial vestibulospinal tract, for control the body posture.

Lateral

arises from lateral vestibular (Deiter's) nucleus, descends ipsilaterally

Medial

Is the descending part of the medial longitudinal fasciculus, projects bilaterally

Vestibulocochlear Nerve

Cochlear Part

conveys impulses associated with hearing. The representation of cochlea is essentially bilateral at all levels.

Afferent

1 st Order Neurons are located in the spiral ganglion within the cochlea (organ of Corti in inner ear)		2 nd Order Neurons From the cochlear nuclei, fibers ascend into	3rd Order Neurons From the superior olivary nuclei, ascending	4 th Order Neurons The inferior colliculi project to medial
Peripheral Processes make dendritic contact with hair cells of the organ of Corti within the cochlear duct of the inner ear.	Central Processes terminate in the dorsal and ventral cochlear nuclei (2nd order neurons), which lie close to the inferior cerebellar peduncle in open rostral medulla.	the pons, where: Most fibers cross the midline in trapezoid body and terminate in the nucleus of trapezoid body, or in the contralateral superior olivary nucleus. Some fibers run ipsilaterally and terminate in the superior olivary nucleus.	fibers comprise the lateral lemniscus containing both crossed (mainly) and direct (few) cochlear fibers, which runs through tegmentum of pons and terminate in the inferior colliculus of the midbrain. Some axons within lateral lemniscus terminate in small nucleus of the lateral lemniscus.	geniculate nuclei of thalamus. The axons originating from the medial geniculate nucleus pass through sublenticular part of the internal capsule to the primary auditory cortex (Brodmann s areas 41, 42) located in the dorsal surface of the superior temporal gyrus (Heschl s gyrus)

Lesions of 8th Cranial Nerve

- produces deafness tinnitus, vertigo, dizziness, nausea, nystagmus, loss of balance and ataxia.
- Acoustic neuroma: a benign tumor of 8th nerve leads to compression of the nerve leading to attacks of dizziness, and profound deafness and ataxia.
- Lesions anywhere along the pathway usually have no obvious effect on hearing, producing weakness of hearing in both ears but mostly in the opposite ear.
- Complete Deafness of the affected ear is essentially only caused by damage to the middle ear , cochlea, or auditory nerve.

Cranial Nerves 9 & 10

nerve	9 / IX / glossopharyngeal	10/ X / vagus	
type	Mixed but most of the fiber sensory.	Mixed	
General information	no real nucleus to itself. shares nuclei with VII (facial) and X (vagus)	 the longest and most widely distributed cranial nerve Provide parasympathetic supply to organs thorax and upper abdomen. sensory and motor supply to the pharynx and larynx. 	
Arises from (rootlets)	between olive and inferior cerebellar peduncle		
Leaves the cranial cavity	the glossopharyngeal (9), Vagus (10), Acessory (11), nerves and the Internal jugular vein leave the skull By passing through the jugular foramen.		
Special Visceral Efferent	nucleus ambiguus (NA)		
(SVE)	supply stylopharyngeus muscle	to muscles of pharynx and larynx	
General Visceral Efferent (GVE)	inferior salivatory nucleus (ISN) , supply parotid gland	Dorsal Nucleus of Vagus, innervate cardiac muscle, smooth muscles and glands of viscera.	
Special Visceral Afferent (SVA)	nucleus of solitary tract (NST), supply the taste buds on posterior third of tongue	Spinal Tract & Nucleus of Trigeminal, sensation from auricle, external acoustic meatus and cerebral dura mater	
General Visceral Afferent (GVA)	nucleus of solitary tract. visceral sensation (pain and temp.) from mucosa of posterior third of tongue, pharynx, auditory tube and tympanic cavity, carotid sinus	Nucleus of Solitary Tract, carry impulse from viscera in neck, thoracic and abdominal cavities	

Large and carries general	ganglion & Facial nerve
 Large and carnes general sensations from pharynx, soft palate and tonsil. It is connected to Auricular Branch of Vagus. The Trunk of the nerve is connected to the Facial nerve at the stylomastoid foramen 	 just below the jugular foramen Cranial part of accessory nerve. Hypoglossal nerve, Superior cervical sympathetic ganglion. 1 st cervical nerve.
 Tympanic: in the otic ganglion and gives secretomotor to the parotid gland Nerve to stylopharyngeus muscle Pharyngeal: mucosa of pharynx Tonsillar Lingual: sensory branches, general and special (taste) from the posterior 1/3 of the tongue Sensory branches: from the carotid sinus and body (baroreceptors and chemoreceptors) 	 Meningeal : to the dura Auricular: to external acoustic meatus and tympanic membrane Pharyngeal: supplies mucus membrane of the pharynx, superior and middle constrictor muscles, and all the muscles of the palate EXCEPT tensor palati To carotid body Superior Laryngeal: Internal Laryngeal: sensation to the hypopharynx, epiglottis, and part of the larynx above the vocal folds External Laryngeal: supplies the cricothyroid muscle Recurrent Laryngeal :motor supply to muscles of the larynx EXCEPT cricothyroid
 Difficulty of swallowing Impairment of taste and sensation over the posterior one-third of the tongue ,palate and pharynx. Absent gag reflex. Dysfunction of the parotid gland 	 palatal and pharyngeal and laryngeal paralysis. Abnormalities of esophageal motility, gastric acid secretion, gallbladder emptying, and heart rate; and other autonomic dysfunction 2- Tumors
	 soft palate and tonsil. It is connected to Auricular Branch of Vagus. The Trunk of the nerve is connected to the Facial nerve at the stylomastoid foramen Tympanic: in the otic ganglion and gives secretomotor to the parotid gland Nerve to stylopharyngeus muscle Pharyngeal: mucosa of pharynx Tonsillar Lingual: sensory branches, general and special (taste) from the posterior ¼ of the tongue Sensory branches: from the carotid sinus and body (baroreceptors and chemoreceptors) Difficulty of swallowing Impairment of taste and sensation over the posterior one-third of the tongue ,palate and pharynx. Absent gag reflex. Dysfunction of the parotid

Cranial Nerves 11 & 12

Accessory (11th) Cranial Nerve Type Motor Cranial part (originate in the caudal part of Roots nucleus ambiguous) Emerges from lateral aspect of the medulla ٠ caudal to rootlets of the vagus nerve. At the side of medulla it joins the spinal root. • At the level of jugular foramen these fibres join • the vagus nerve. Spinal part (spinal nucleus) The axons leave the cord (via series of rootlets), emerge laterally between the dorsal and ventral roots of the spinal nerves. • Courses rostrally and enter the cranial cavity through the foramen magnum. Supplies the sternomastoid and trapezius muscles Exit Jugular Foramen Nucleus ambiguous receives bilateral Receives corticonuclear or corticospinal fibers (from both cerebral hemispheres) Function Movements of the soft palate, larynx, pharynx (cranial part). Controls the movements of neck It produces atrophy and weakness of Injury of Spinal Root it may be damaged by penetrating trauma as trapezius. stab wounds. It is considered the most • Unilateral paralysis of trapezius, inability commonly iatrgenically injured nerve as during removal of malignant lymph nodes in to elevate (retract) the shoulder, difficulty the posterior triangle. in elevating the arm Dropping of the shoulder is an obvious sign of 11th CN. Injury.

Hypoglossal (12 th) Cranial Nerve		
Туре	Motor	
Origin	Hypoglossal nucleus	
Foramen of exit	Hypoglossal canal	
Receives	 corticonuclear fibers from both (bilateral) cerebral hemispheres EXCEPT the region that supplies genioglossus muscle afferent fibers from nucleus solitarius and trigeminal sensory nucleus 	
Function	 Supplies motor innervation to all of the muscles of the tongue Except the palatoglossus (Controls the movements and shape of the tongue during speech and swallowing) Carries proprioceptive afferents from the tongue muscles. 	
Lesion	 Loss of tongue movements Difficulty in chewing and speech The tongue paralyses, atrophies, becomes shrunken and furrowed on the affected side On protrusion, tongue deviates to the affected side If both nerves are damaged, person can't protrude tongue 	

Summary of Lesions

Lesion/Disease	Affects	Cause
Erb-Duchenne Palsy (Waiter /policeman's tip)	lesion of Upper Trunk of brachial plexus	Excessive displacement of head to opposite side and depression of shoulder on same side
Klumpke Palsy	lesion of Lower Trunk of brachial plexus	Traction injuries: person falling from height and clutching an object to save himself.
Ape hand (Pope's Blessings).	Median nerve injury	
Claw hand	Ulnar nerve injury	
Tabes Dorsalis	Dorsal Column (ascending sensory tract)	A late manifestation of syphilitic infection
Subacute Combined Degeneration of the spinal cord	Dorsal Column (lateral column may also be affected) (ascending sensory tract)	A systemic disease results from B12 deficiency
Multiple Sclerosis	Fasciculus Cuneatus of dorsal column	Autoimmune disease.
Syringomyelia	(Lateral) spinothalamic tract	Enlargement of central canal.
Friedrichs ataxia	Spinocerebellar tracts	Inherited degenerated disease

Cranial Nerve Lesions		
Monocular blindness	Optic 2 (optic nerve)	
Bitemporal hemianopia	Optic 2 (optic chiasm)	
Contralateral homonymous hemianopia	Optic 2 (optic tract, radiation, occipital cortex)	
Lateral squint, ptosis, diplopia, pupillary dilation, loss of accommodation	Occulomotor 3	
Diplopia & inability to rotate eyeball infero-laterally	Trochlear 4	
Trigeminal neuralgia/ tic douloureux	Trigeminal 5	
Medial squint	Abducens 6	
Bells palsy	Facial 7	
Deafness, tinnitus, vertigo, dizziness, nausea, nystagmus, loss of balance, ataxia	Vestibulocochlear 8	
Absent gag reflex, difficulty swallowing, impairment of taste of posterior 1/3 rd of tongue	Glossopharyngeal 9	
Palatal, pharyngeal, and laryngeal paralysis, autonomic dysfunction	Vagus 10	
Atrophy and weakness of trapezius, inability to elevate & retract shoulder, difficulty elevating arm, dropping of shoulder.	Accessory 11 (spinal root)	
Loss of tongue movement, difficulty in chewing and speech, tongue paralyses, atrophies, and deviates to affected side (if both nerves are damaged can't protrude tongue)	Hypoglossal 12	