

Anatomy of Cerebellum and Relevant Connections

Please view our <u>Editing File</u> before studying this lecture to check for any changes.

Objectives

At the end of the lecture, students should:

- ✓ Describe the External features of the cerebellum (lobes, fissures).
- \checkmark Describe briefly the <u>Internal structure</u> of the cerebellum.
- ✓ List the name of <u>Cerebellar Nuclei</u>.
- ✓ Relate the <u>Anatomical</u> to the <u>Functional</u> <u>Subdivisions</u> of the cerebellum.
- ✓ Describe the <u>Important connections</u> of each subdivision.
- \checkmark Describe briefly the Main Effects in case of <u>lesion</u> of the cerebellum.

Cerebellum

Playlist

- Origin: from Hindbrain. Ο
- Position: lies behind Pons & Medulla Separated from them by Fourth ventricle. Ο
- *Connections:* to the **brainstem** by <u>Inferior</u>, <u>Middle</u> & <u>Superior</u> **Cerebellar Peduncles**. Ο (midbrain)

(medulla) (pons)

Cerebellum External Features

- It consists of two Cerebellar Hemispheres joined in midline by the <u>Vermis</u>.
- Its surface is highly *convoluted* forming
 Folia (like gyri), separated by Fissures (like sulci).

Anatomical Subdivision

- **1. Anterior lobe**: <u>in front</u> of <u>primary fissure</u>, on the superior surface.
- Posterior (middle) lobe: <u>behind</u> primary fissure (Between Primary & <u>Secondary/posterolateral fissures</u>).
- **3.** Flocculonodular lobe: <u>in front</u> of *secondary* (Posterolateral) *fissure*, on the inferior surface .

Cerebellum Anatomical Subdivision

External surface of cerebellum

Cerebellum Constituents (Internal Structure and Nuclei of Cerebellum)

Fastigial nucleu

lobose nucleu

Emboliform nue

Extra

Cerebellum Cerebellar Cortex

The cerebellar cortex is divided into **3 layers**:

1. Outer molecular layer

2. Intermediate Purkinje cell layer

3. Inner granular layer

Granular layer

C(X 160)

Cerebellar bisected folium Molecular Layer Cortex Purkinje Cell transected folium Granule Cell Layer basket cell White Matter Golgi cell mossy fiber mossy Purkinje cell axon fiber climbing fiber Extra granule cell climbing fiber

Transverse sections of cerebellar folia showing the layers of the cerebellar cortex.

Cerebellum

Cerebellar Medulla

Afferent fibers:

Fibers coming into the cerebellum They are of two types: mossy and climbing

Climbing fibres:

from inferior olivary nucleus, relay to purkinje cells

Mossy fibres: rest of fibres:

- 1. <u>From</u> vestibular nuclei
- 2. <u>From</u> spinal cord
- 3. <u>From</u> pons

They <u>relay</u> to *granule cells* which in turn <u>relay</u> to *purkinje cells*.

Finally <u>all afferent fibers</u> passing through the medulla <u>relay</u> to **purkinje cells in the cortex.**

Cerebellum Cerebellar Medulla

- Axons of Purkinje Cells are the only axons to leave the cortex to medulla:
 - The great majority of axons <u>do not leave</u> cerebellum & end in *deep cerebellar nuclei*, specially <u>Dentate</u> <u>nucleus</u>.
 - 2. Some of axons leave cerebellum as efferent fibres.

Efferent Fibres:

- Most of efferent fibres are *axons of deep cerebellar nuclei*.
- Main Efferents go to:
 - 1. Vestibular nuclei (cerebello-vestibular tract).
 - 2. Red nucleus (Dendato-rubro-thalamic tract).
 - 3. Ventral lateral nucleus of thalamus (Dendato-thalamic).

Cerebellum Functional Subdivisions

Cerebellum is divided according to function into 3 parts:

1. Archicerebellum

<u>Vestibular</u> Part of cerebellum: **Flocculonodular** lobe.

2. Paleocerebellum

Spinal Part of cerebellum: Vermis & Paravermis

3. Neocerebellum

<u>Cerebral</u> Part of cerebellum: **Rest of Cerebellum**.

B Anterior view.

Cerebellum Functional Subdivisions

SCP = superior cerebellar peduncle MCP = middle cerebellar peduncle ICP = inferior cerebellar peduncle

	Archicerebellum	Paleocerebellum	Neocerebellum
Nuclei Related	Fastigial	Globose & Emboliform	Dentate
Afferents	from Vestibular nuclei (<i>Vestibulocerebellar</i> fibres), (through ICP)	from spinal cord (dorsal <i>spinocerebellar</i> tracts through ICP & ventral <i>spinocerebellar</i> tract through SCP)	from Pons (<i>Pontocerebellar</i> fibres) (through MCP)
Efferents	cortical (purkinje cell) Fibres project : to Fastigial nucleus , which projects to vestibular nuclei (through ICP) + to Reticular formation	to globose & embliform nuclei which project to red nucleus (through SCP)	to Red nucleus but mostly to Ventral Lateral Nucleus of Thalamus (through SCP) then to motor cortex
Function	 controls body Balance (via <u>vestibulospinal</u> & reticulospinal tracts). Control of eye movement (via VO vestibulo-ocular reflex) 	controls posture & muscle tone (via <u>Rubrospinal</u> tract).	coordination of voluntary movements (via <u>descending corticospinal</u> & <u>corticobulbar</u> tracts or <u>rubrospinal</u> tract).

Only on the girls' slides

In the PowerPoint presentation this slide is animated.

Only on the boys' slides

Cerebellum Cerebellar Lesions

- MIDLINE LESION: Loss of postural control.
- UNILATERAL LESION: "Cerebellar ataxia" causes *ipsilateral*:
 - 1. Incoordination of arm: **intention tremors** (on performing voluntary movements)
 - 2. Incoordination of leg: **unsteady gait**
 - 3. Incoordination of eye movements: **nystagmus**
 - 4. Slowness of speech: **dysarthria** (difficulty of speech)

Saccades; gaze-evoked and rebound nystagmus

Summary

- <u>Anatomically</u>, the cerebellum is divided into:
 anterior, **posterior** & **flocculonodular** lobes.
- <u>Developmentally</u> & <u>functionally</u>, it is divided into: archi- paleo- & neocerebellum.
- **1.** Archicerebellum (flocculonodular lobe) is the oldest part of cerebellum, related to fastigial nucleus, connected to vestibular nuclei & concerning for *control of body balance*.
- 2. Paleocerebellum (vermis & paravermis) is related to globose & emboliform nuclei, connected to spinal cord & red nucleus & concerned with regulation of posture & muscle tone.
- **3. Neocerebellum** (most of human cerebellum) is related to **dentate** nucleus, connected to **pons**, **thalamus**. Its final destination is to **motor cortex**. It is *concerned with coordination of voluntary movements*.
- **Cerebellar lesions lead to ipsilateral incoordination** (ataxia).

Characteristics	Cerebellum			
Origin	From hindbrain			
Position	Lies behind the pons and medulla, separated from them by 4 th ventricle			
External structures	Consists of two cerebellar hemispheres joined in the midline by vermis	Its surface is highly convoluted forming folia , separated by fissures		
Internal structures	Outer grey matter: cerebellar cortex Inner white matter: cerebellar medulla	 Deep seated nuclei in white matter: (from medial to lateral) I. Fastigial nnucles 2. Globose nucleus 3. Emboliform nucleus 4. Dentate nucleus 		
Anatomical subdivisions	Anterior lobe: In front of primary fissure	Posterior (middle) lobe: Between primary and secondary (postero-lateral) fissures	Flocculonodular lobe: In front of secondary fissure	

Characteristics Cerebellum **Neocerebellum:** Archicerebellum: **Functional subdivisions Paleocerebellum:** Globose and emboliform nuclei Dentate nucleus relation Fastigial nucleus relation Superior relation Anterior lobe Priman Afferent: from vestibular nuclei Afferent: from pons Hemisphere fissure Posterio (vesttibulocerebellar fibers) through (pontocerebellar tract) through MCP **Afferent:** from spinal cord (ventral **ICP** and dorsal spinocerebellar tracts through ICP and SCP respectively) **Efferent:** to red nucleus but mostly to ventral lateral nucleus of **Efferent:** cortical (purkinje cell) Horizor nferior fissure thalamus through SCP then to fibers project to fastigial which **Efferent:** to globose and Postero fissure project to vestibular nuclei <u>+</u> emboliform nuclei which projects motor cortex Nodule Flocculus to red nucleus (through SCP) reticular formation **Function:** Coordination of Flocculonodular lobe **Function:** Control body balance Function: Control posture and voluntary movements Green = Archi-cerebellum, and eye movement muscle tone

Blue= Paleo-cerebellum. Pink= Neo-cerebellum.

Cerebellar lesions

MIDLINE LESION: Loss of postural control. UNILATERAL LESION: "Cerebellar ataxia"

causes ipsilateral :

- I. Incoordination of arm: intention tremors (on performing voluntary movements)
- 2. Incoordination of leg: unsteady gait
- 3. Incoordination of eye movements: nystagmus
- 4. Slowness of speech: dysarthria (difficulty of speech).

Questions

- 1. _____ Climbing and mossy fibers relay to: _____
 - A. Afferent, Inner granular layer
 - B. Efferent, Inner granular layer
 - C. Afferent, purkinje cells
 - D. Efferent, purkinje cells

Answer: C

- 2. To which of the following do main efferents go to:
 - A. Red nucleus
 - B. Ventral posterior nucleus of thalamus
 - C. Globose nucleus
 - D. Emboliform nucleus

Answer: A

- 3. The nuclei related to paleocerebellum are:
 - A. Globose & Dentate
 - B. Emboliform & Fastigial
 - C. Dentate & Fastigial
 - D. Globose & Emboliform

Answer: D

- 4. The cerebellum originates from the dorsal aspect of the brain stem and overlies the _____ ventricle.
 - A. Lateral ventricle
 - B. Midline ventricle
 - C. Third ventricle
 - D. Fourth ventricle

Answer: D

- 5. Neocerebellum coordinate voluntary movements via:
 - A. Vestibulospinal & reticulospinaltracts
 - B. Descending corticospinal & corticobulbar tracts
 - C. Descending corticospinal & reticulospinaltracts
 - D. Vestibulospinal & corticobulbar tracts

Answer: B

- 6. Archicerebellum controls:
 - A. Body Balance
 - B. Posture
 - C. Memory and speech
 - D. All of the above

Answer: A

- 7. Damage to the cerebellum does not cause disorders of:
 - A. Movement
 - B. Equilibrium
 - C. Motor learning
 - D. Posture

Answer: C

8. List the effects of unilateral cerebellar lesion:

Answer: intention tremors, unsteady gait, nystagmus, dysarthria.

9. Name the three layers of the Cerebellum's cortex:

Answer: Molecular, Purkinje, and Granular

10. Damage to the cerebellum results in effects on which side of the body? Answer: ipsilateral

Leaders: Nawaf AlKhudairy Jawaher Abanumy *Members:* Allulu Alsulayhim Deena AlNowiser Lama AlTamimi Reema Alshayie

anatomyteam436@gmail.com

@anatomy436

Anatomy Team

References:

- 1- Girls' & Boys' Slides
- 2- Greys Anatomy for Students
- 3- TeachMeAnatomy.com