
بِسْ مِلْسَاكُمْ الْكُمْلِزِ ٱلرِّحِكِمِ

Internal Structures of the Brain Stem

Please view our **Editing File** before studying this lecture to check for any changes.

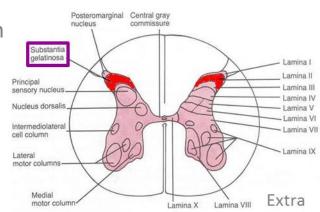
Color Code

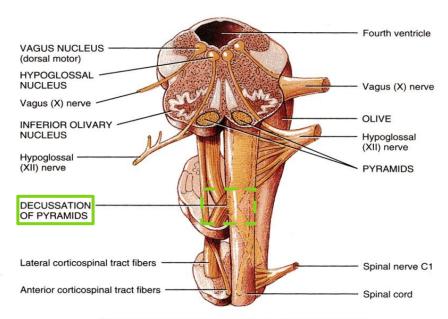
- Important
- Doctors Notes
- Notes/Extra explanation

Objectives

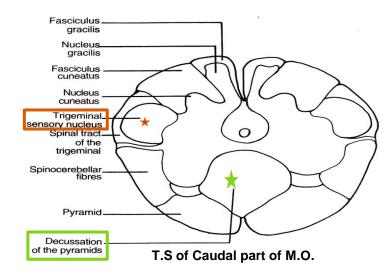
By the end of the lecture, students will be able to:

- ✓ Distinguish the <u>internal structure of</u> the components of the <u>brain</u> <u>stem</u> in different levels and the <u>specific criteria of each level.</u>
- 1. Medulla oblongata (closed, mid and open medulla)
- 2. Pons (caudal, mid "Trigeminal level" and rostral).
- 3. Mid brain (superior and inferior colliculi).
- Describe the <u>Reticular formation</u> (structure, function and pathway) being an important content of the <u>brain stem</u>.

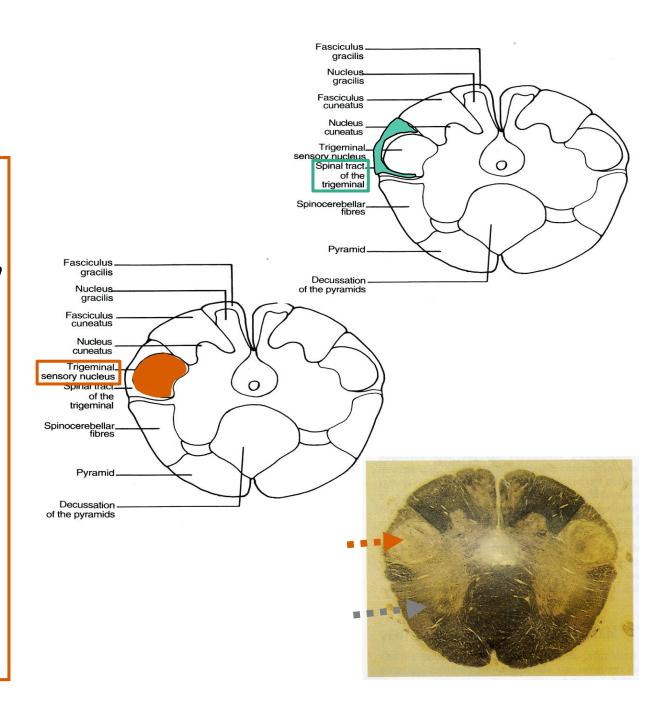

1. Medulla Oblongata Caudal (closed) Medulla


- Traversed* by the Central Canal.
- Motor Decussation**.
- Spinal Nucleus of Trigeminal nerve (<u>Trigeminal</u>):
 - It is a larger sensory nucleus.
 - It is the brain stem continuation of the <u>Substantia Gelatinosa</u> of spinal cord.

* *Traversed =* travel across or through


**Decuss- = crossing

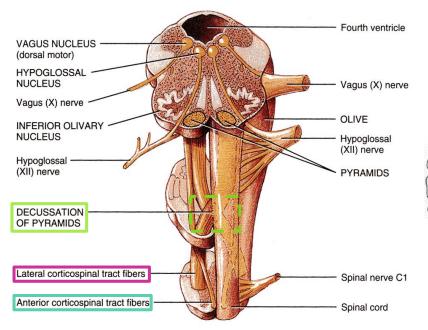
Doctor's note: the major thing we see in the closed Medulla is The Motor Decussation.


Transverse section and anterior surface of medulla oblongata

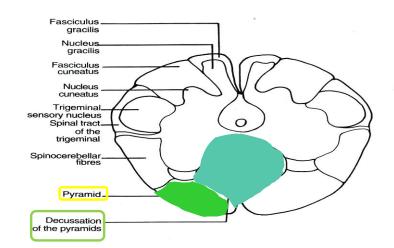
1. Medulla Oblongata Caudal (closed) Medulla

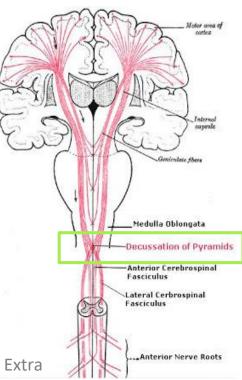
Trigeminal Sensory Nucleus & Tract

- O The Nucleus Extends :
 - Through the <u>whole length</u> of the brain stem and into <u>upper segments</u> of spinal cord.
- It lies in all levels of medulla oblongata, medial to the spinal tract of the trigeminal.
- It receives pain and temperature from face and forehead (recall this was the function of substantia gelatinosa).
- Its <u>tract</u> present in all levels of M.O. is formed of descending fibers that terminate in the trigeminal nucleus.



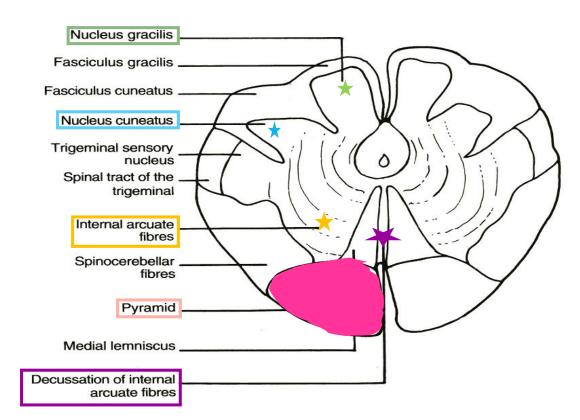
1. Medulla Oblongata Caudal (closed) Medulla

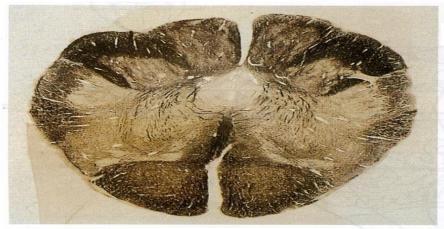

Pyramidal Decussation


- Pyramidal decussation is Motor Decussation*.
- Formed by pyramidal fibers, (75-90%) cross to the opposite side
- They descend in the lateral white column of the spinal cord as the lateral corticospinal tract.
- The uncrossed fibers (the remaining 10-25%) form the <u>ventral</u> corticospinal tract.

*Decuss-= crossing

Transverse section and anterior surface of medulla oblongata

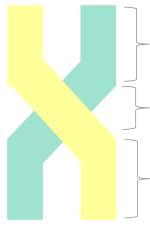




1. Medulla Oblongata Mid Medulla

- Traversed by Central Canal.
- Larger size Gracile & Cuneate nuclei, concerned with proprioceptive (knowing the normal body position) deep sensations of the body.
- Axons of Gracile & Cuneate nuclei form the <u>internal arcuate fibers</u>; (they form arch like structure) <u>Sensory Decussation</u>.*
- o **Pyramids** are prominent *ventrally*.

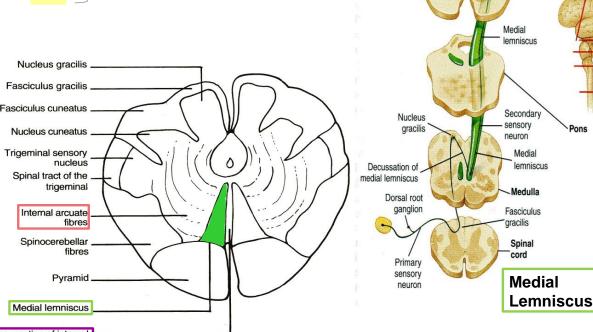
Motor decussation (pyramids): Closed/Caudal Medulla Sensory decussation (internal arcuate fibers): Mid Medulla


1. Medulla Oblongata Mid Medulla

Sensory Decussation

- Formed by the crossed <u>internal</u> <u>arcuate fibers</u>.
- Medial Leminiscus*:
 - Composed of the ascending internal arcuate fibers <u>after</u> their crossing.
 - Lies adjacent to the middle line ventral to the central canal
 - Terminates in thalamus.
 - Concerned with proprioceptive deep sensation.

*lemniscus = ribbon


Doctor's note: don't be confused about Tracts, Fasciculus, Leminiscus. They are all tracts with different locations and shapes.

After crossing and they ascend and form the **medial leminsicus**.

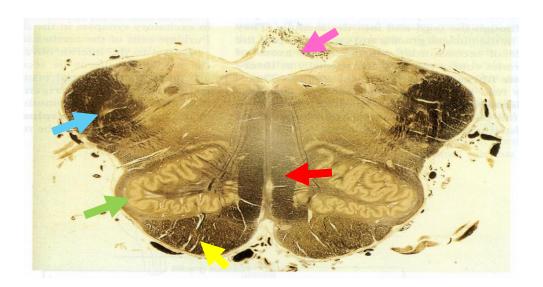
At the level of the crossing it is called **sensory decussation**

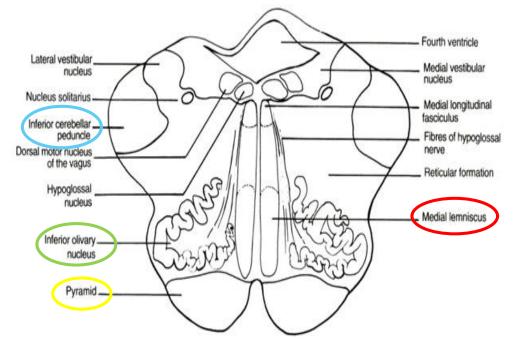
Before they cross they are the internal arcuate fibers from gracile and cuneate nuclei

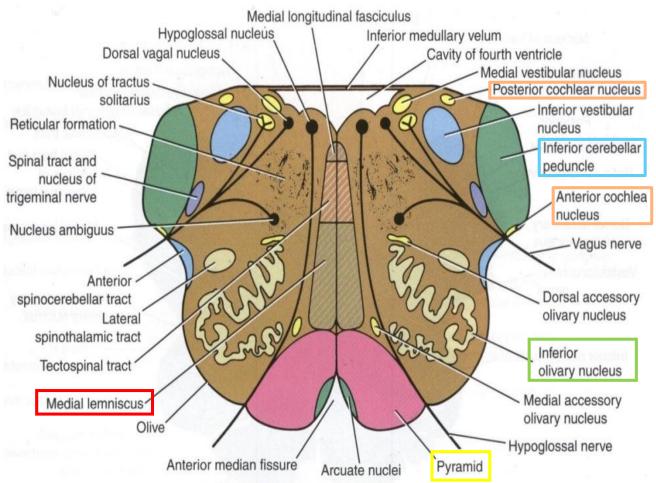
1. Medulla Oblongata Rostral (open) Medulla

On the ventral aspect:

The pyramid is clear, with medial lemniscus on either sides of middle line dorsal to the pyramid


O Inferior Olivary Nucleus:


- A convoluted mass of gray matter., lies <u>posterolateral</u> to the pyramids & lateral to the medial leminiscus.
- It is concerned with the *control of movement*. The fibers in here will come from the cerebellum.


Doctor's Note: we call it open medulla because the central canal will open at this level into the 4th ventricle.

Its dorsal surface forms:

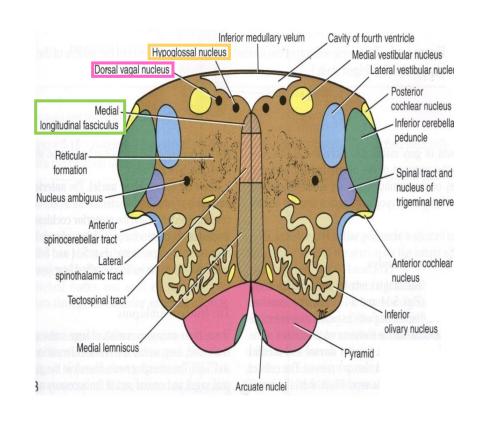
- Lower part of the <u>floor of the 4th</u> ventricle.
- The Inferior Cerebellar Peduncle is, connecting Medulla Oblongata with cerebellum.
- <u>Dorsal</u> and <u>lateral</u> to the Inferior cerebellar peduncle lie the <u>Cochlear</u> <u>nuclei</u> (*dorsal and ventral*).

1. Medulla Oblongata Rostral (open) Medulla

Beneath the floor of 4th ventricle lie:

- 1. Hypoglossal Nucleus.
- 2. Dorsal Nucleus of Vagus

<u>lateral</u> to the hypoglossal nucleus, contains preganglionic parasympathetic fibers.


3. Medial longitudinal fasciculus.

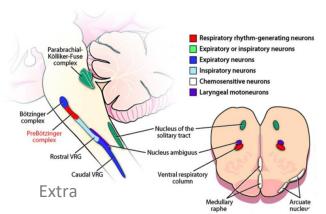
it is *important* association tract, lies close to the midline, ventromedial to the hypoglossal nucleus. *Function*:

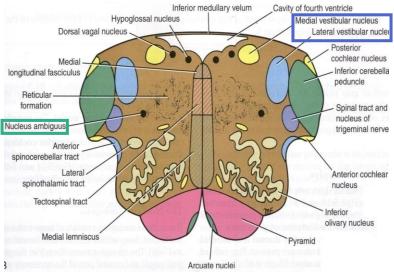
Upwards:
 It links the <u>vestibular nuclei</u> with nuclei of extraocular muscles (in CN 3,4&6) as (<u>vestibulo-ocular tract</u>) to help coordination of eye movements with head movements.

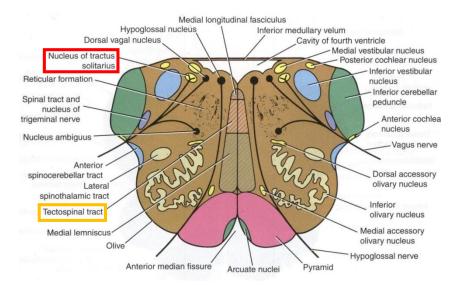
• Downwards:

It links <u>vestibular nuclei</u> with **anterior horn cells** of spinal cord **(cervical & upper thoracic segments)** as (<u>vestibulo-spinal tract</u>)---so, the neck & trunk move with head movements.

1. Medulla Oblongata Rostral (open) Medulla

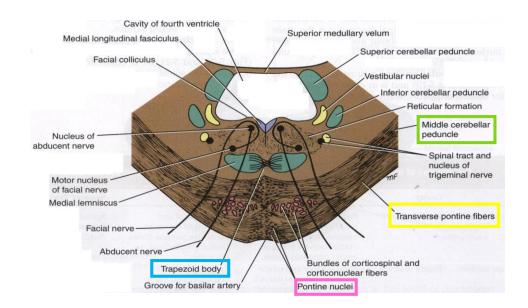

4. Vestibular nuclei complex: concerned with *equilibrium*.


5. <u>Nucleus Ambiguus</u>: (motor nucleus): lies <u>dorsal</u> *to* **olivary nucleus** gives motor fibers along *glossopharyngeal N*. & *vagus N*. to motor supply of the constrictors of the pharynx, intrinsic muscles of the larynx & palate.


6. <u>Solitary nucleus</u> (sensory nucleus):
lies <u>ventrolateral</u> to *dorsal nucleus of vagus*, receive
taste sensation from the tongue along the *facial* (VII),
glossopharyngeal (IX) and vagus (X).

7. Tectospinal tract:

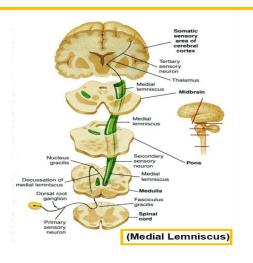
between tectum of midbrain and spinal cord (involved in head movements during visual and auditory tracking).

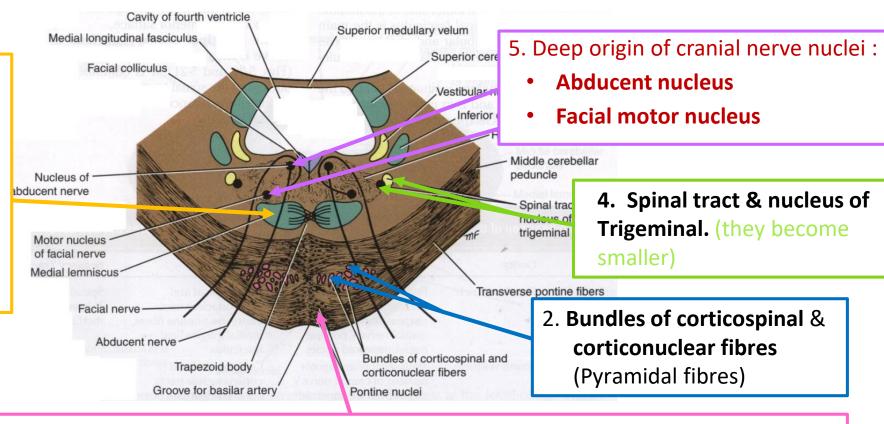


2. Pons

Caudal Part of Pons

- o Divided into an anterior part (Basis Pontis) & a posterior part (Tegmentum) by the Trapezoid Body.
- The trapezoid body consists of acoustic fibres (hearing fibers) from cochlear nuclei to ascend into midbrain as *lateral lemniscus* and terminate in *inferior colliculus*.
- The ventral(anterior) portion is marked by numerous *transversely* oriented fascicles of **pontocerebellar fibres** that originate from scattered cell groups, the **pontine nuclei**(black dots) and that pass to the *contralateral side* of the <u>cerebellum</u> through the massive **middle cerebellar peduncle**.

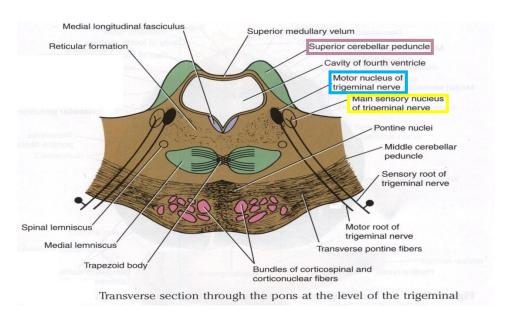

Compare:


Medial lemniscus	Lateral lemniscus
Ascending internal arcuate fibers	Acoustic fibres from cochlear nuclei
Terminates in thalamus	Terminate in <u>inferior</u> <u>colliculus</u>

PonsCaudal Part of Pons

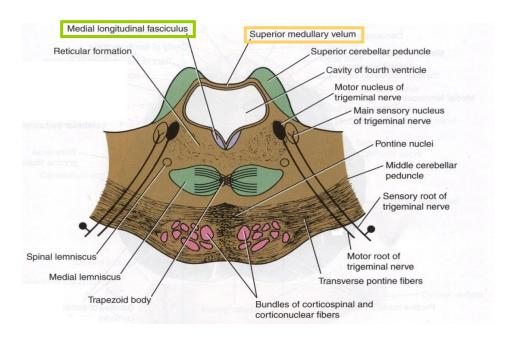
3. The *ascending fibres* of the **medial lemniscus**

- become separated from the pyramid and displaced dorsally.
- The Medial Lemniscus rotates 90 degrees and lies almost horizontally.


1. Pontine Nuclei:

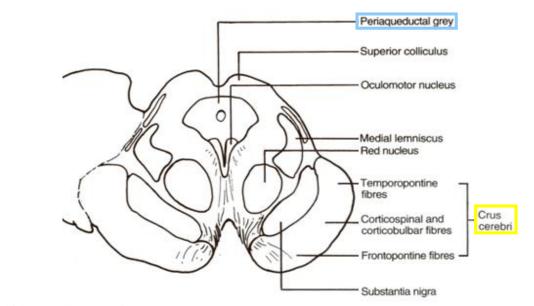
- Are small masses of nerve cells, receive corticopontine fibers (involved in motor activity).
- Their axons form the **transverse pontocerebellar fibers** which pass to the contralateral side of the cerebellum through **Middle Cerebellar peduncles**.

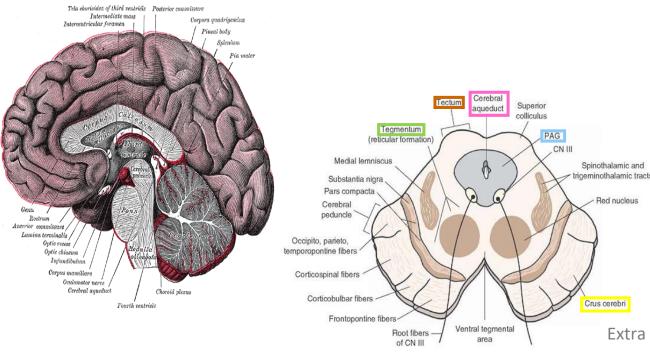
2. Pons


Level of Trigeminal Nerve (Mid Pons)

- Motor nucleus of the trigeminal nerve: Lies in the <u>lateral part of the floor</u> of the 4th ventricle.
- Main sensory nucleus of the trigeminal nerve: Reaches its maximum extent in the pons and it lies lateral to the *motor nucleus*.
- Superior cerebellar peduncles form the <u>lateral</u> boundary of the 4th ventricle.

Rostral Pons

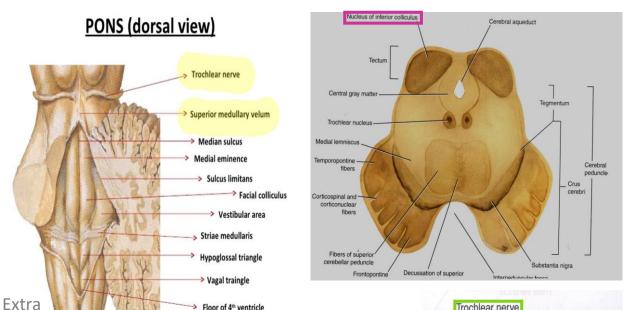

- Superior Medullary Velum:
 - Passes *between* the two peduncles & forms the *roof of the 4th ventricle*.
- Medial longitudinal fasciculus:
 - Lies close to the midline beneath the floor of the 4th ventricle.

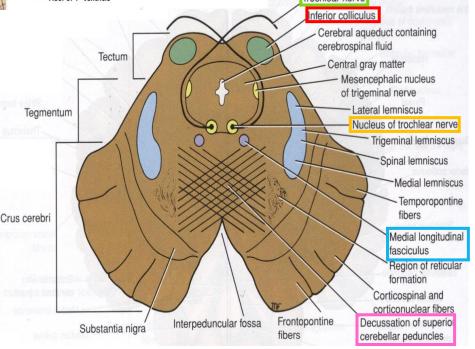


- It is divided at the *level of the* cerebral aqueduct into:
 - a dorsal part (Tectum) and
 - a <u>ventral</u> part (**Tegmentum**)

In pons it will be the opposite.

- The cerebral aqueduct is surrounded by a pear shaped periaqueductal (central) gray matter.
- The most <u>ventral</u> part of the tegmentum is the massive fibrous mass (Crus Cerebri).


3. Midbrain Inferior Colliculus Level

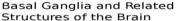

- Inferior colliculus is a large nucleus of gray matter that lies beneath a corresponding surface elevation.
- It is part of the auditory pathway.
- o It receives fibers from the *lateral lemniscus*.
- o Its efferent fibers pass to the thalamus.

Structures:

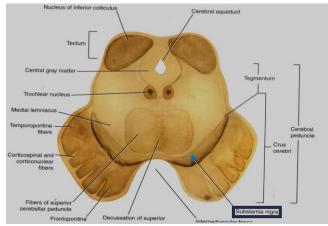
1. Trochlear nucleus:

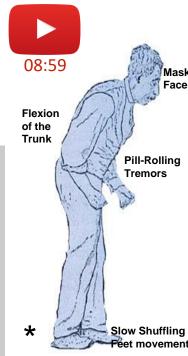
- lies in the central gray matter close to the median plane just posterior to the medial longitudinal bundle.
- The fibers of the <u>trochlear nerve</u> decussate in the superior medullary velum.
- 2. **Decussation of the superior cerebellar peduncles** in the mid line.

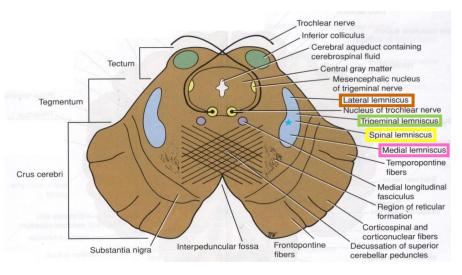
Inferior Colliculus Level

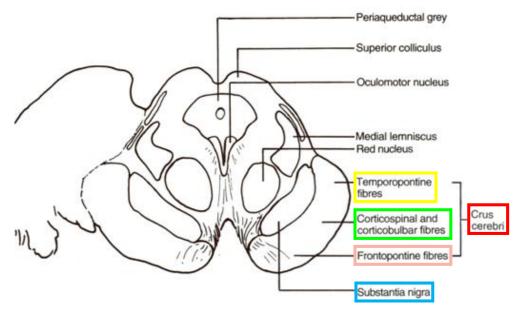

3. **Substantia nigra**:

- Occupies the most <u>ventral</u> part of the tegmentum.
- It consists of pigmented, melanin containing neurones.
- It projects to the basal ganglia. Its degeneration is associated with *Parkinson's disease**.


Tone of the muscle will be lost.

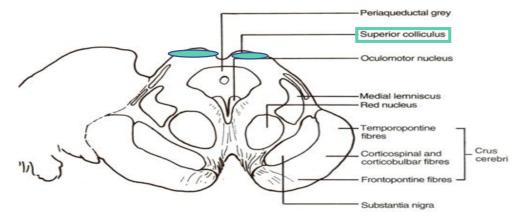

4. Ascending Leminisci:


- Composed Of:
 - Medial lemniscus.
 - Spinal (Lateral & anterior spinothalamic tracts)
 - Trigeminal (Lateral & medial).
 - Lateral lemniscus.

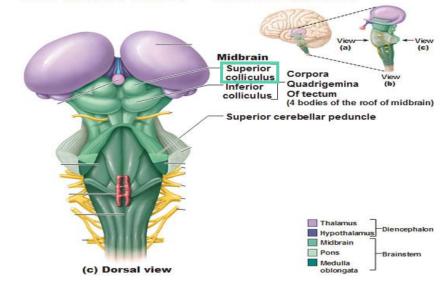


Crus Cerebri

- It is a massive mass <u>ventral</u> to the <u>substantia nigra</u>.
- It consists entirely of descending cortical efferent fibers
 (Frontopontine, Corticospinal & corticobulbar and Temporopontine Fibres) to the motor cranial nerve nuclei and to anterior horn cells.
- Involved in the coordination of movement.
- Present in both levels of colliculi (inferior and superior).



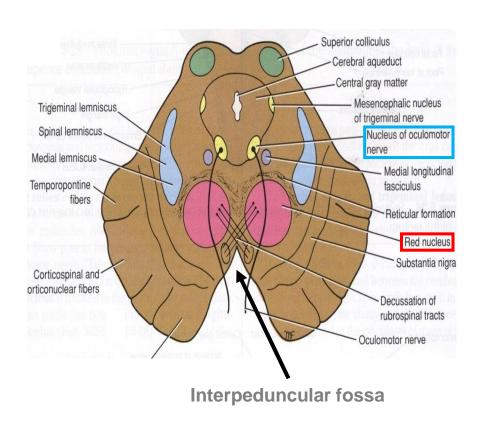
Superior Colliculus Level


- A large nucleus of gray matter that lies beneath corresponding elevation.
- It forms part of the visual reflexes*.
- Its efferent fibers go to the anterior horn cells & to cranial nuclei 3, 4, 6, 7 & 11.
- It is responsible for the reflex movements of the eyes, head and neck in response to visual stimuli, as in following a moving object or altering the direction of the gaze.

*to remember:

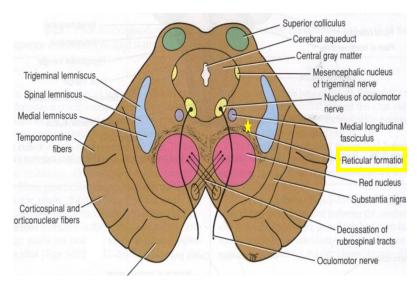
The eyes are on top so the superior colliculus \rightarrow visual

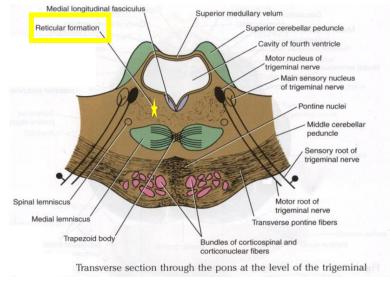
The Brain Stem—The Midbrain

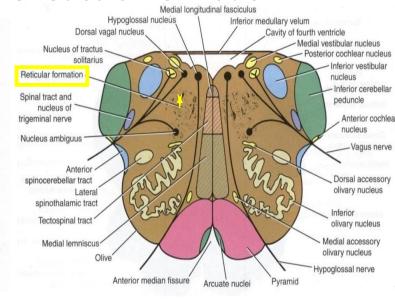

Superior Colliculus Level

1. Oculomotor nucleus:

- Situated in the central gray matter close to the median plane.
- The fibers of the oculomotor nerve passes
 anteriorly through the red nucleus to emerge on
 the medial side of the crus cerebri.


2. Red nucleus:


- A rounded mass of gray matter that lies in the central portion of the tegmentum.
- Its red coloration is due to its <u>vascularity</u> and the presence of an <u>iron containing pigment</u> in the cytoplasm of its neurons. (Important)
- o It is involved in **motor control**.



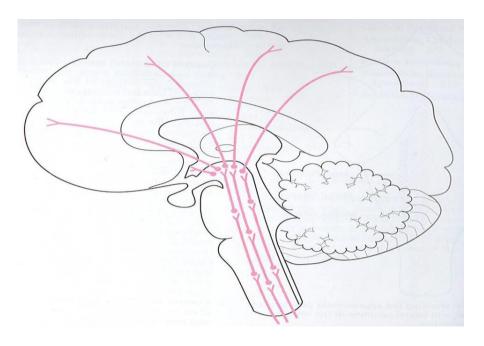
Reticular Formation (these are important fibers and mostly unnamed)

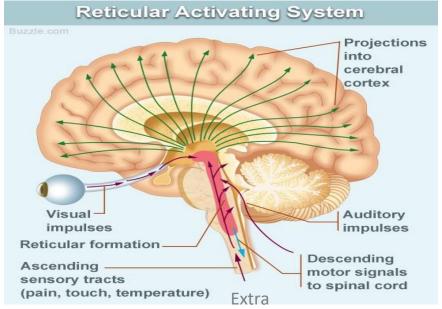
- It is a complex matrix of nerve fibers & small groups of nerve cells that extends throughout the brain stem.
- It has a number of important functions i.e. Respiratory and Cardio- vascular centers are located in the medullary and caudal pontine reticular formation.

MIDBRAIN

PONS

MEDULLA


Reticular Formation Reticular Tract

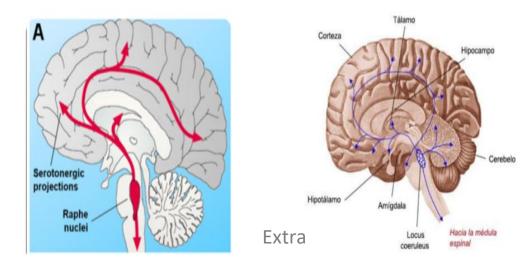

Reticulo spinal tracts:

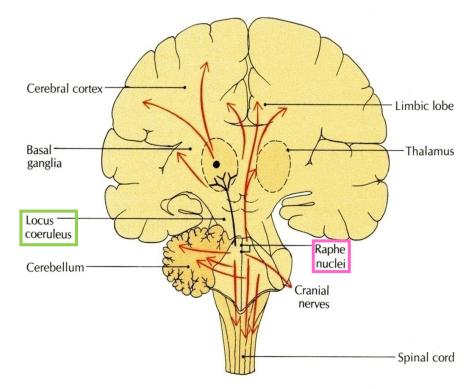
Influence a muscle tone & posture

Reticular Activating system:

- Formed of some of the ascending fibers of the reticular formation.
- They activate the cerebral cortex through the thalamus.

Reticular Formation


Reticular Neurones


o Raphe Nuclei:

- Midline reticular nuclei.
- They are serotonergic* (serotonin producing)
- Its <u>ascending fibers</u> to the cerebral cortex are involved in the mechanisms of **sleep**.
- Its <u>descending fibers</u> to the spinal cord are involved in the modulation of **Pain**.

O Locus Ceruleus:

- Pigmented neurons that lie in the tegmentum of the caudal midbrain & rostral pons
- It is the main noradrenergic cell group of the brain.
- Helps in arousal and sleep-wake cycles.

^{*}A serotonergic or serotonergic agent is any chemical that modifies the effects of serotonin in the body

Summary of levels and structures:

	Caudal / Closed	 Traversed by central canal Motor decussation Trigmenial sensory nucleus
Э	Mid	 Traversed by central canal Gracile and cuneate nuclei Internal arcuate fibers Sensory decussation Medial leminiscus
Medulla	Rostral / Open	 Dorsal surface forms lower part of floor of 4th ventricle Cochlear nuclei (dorsal and ventral) Hypoglossal nucleus Dorsal nucleus of vagus Medial longitudinal fasciculus Vestibular nuclei complex Nucleus ambiguus Solitary nucleus Tectospinal tract

Pons	Caudal	 Trapezoid body (divides it into basis pontis and tegmentum) Transverse pontocerebellar fibers Pontine nuclei Bundles of corticospinal & corticonuclear fibers. Medial lemniscus Spinal tract & nucleus of trigeminal Deep origin of CN 6 & 7
	Mid (level of trigeminal)	 Motor nucleus of trigeminal Main sensory nucleus of the trigeminal Superior cerebellar peduncle (forms lateral boundary of 4th ventricle)
	Rostral	 Superior medullary velum Medial longitudinal fasciculus

	Inferior	1. Trochlear nucleus
	colliculi	2. Decussation of cerebellar peduncle sin the
	(auditory)	midline
		3. Substantia nigra (parkinsons)
Midbrain		4. Ascending lemnisci
idbi	Crus	Descending cortical efferent fibers
Σ	cerebri	(present in superior and inferior colliculi)
	Superior	Occulomotor nucleus
	colliculi	2. Red nucleus
	(visual)	

MCQs

1. Most axons of cochlear nuclei cross the midline of pons forming:

A- the medial lemniscus

B- the red nucleus

C- trapezoid body

D- the medial longitudinal fasciculus

Answer: C

2. The axons of the cochlear nuclei are represented in:

A- trapezoid body

B- medial longitudinal bundle

C- tectospinal tract

D- spinal lemniscus

Answer: A

3. Which of the following lies in the tegmentum of the midbrain:

A- oculomotor nuclei

B- trochlear nucleus

C- red nucleus

D- fascial nucleus

Answer: C

4. Parkinsons disease results from degeneration of:

A- red nucleus

B- substantia nigra

C- inferior olivary nucleus

Answer: B

5. Solitary nucleus is responsible for which of the following?

A- hearing

B- taste sensation

C- vision

D- fine touch

Answer: B

6. The caudal pons give have deep nuclei of which nerve?

A- vagus

B- facial

C- trigeminal

Answer: B

7. The reticular formation is found in:

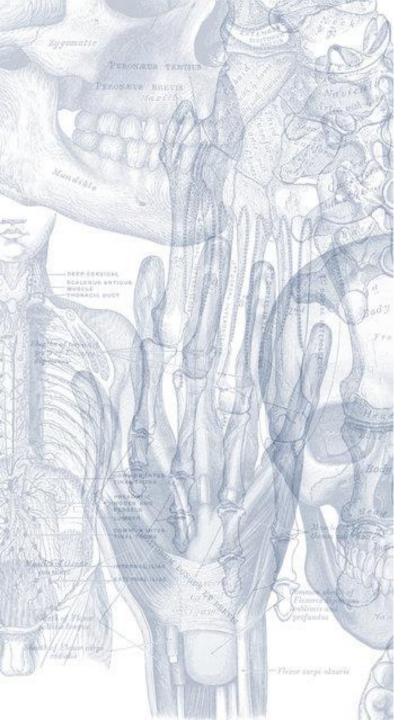
A- midbrain

B- pons

C- medulla oblongata

D- all of the above

Answer: D


8. Which nerve fibers emerge on the medial side of the crus cerebri:

A- occulomotor

B- opthalmic

C- vestibulocochlear

Answer: A

Leaders:
Nawaf AlKhudairy
Jawaher Abanumy

Members:

Alanoud Abuhaimed

Feedback

anatomyteam436@gmail.com

@anatomy436

Anatomy Team

References:

- 1- Girls' & Boys' Slides
- 2- Greys Anatomy for Students
- 3- TeachMeAnatomy.com