

Text

Important

Formulas

Numbers

Doctor notes

Notes and explanation

Lecture No.13

"There Is A Crack In Everything.
That's How The Light Gets In"

Physiology of Taste and Smell

Objectives:

- I. Appreciate the physiology of olfaction.
- 2. Describe the olfactory pathway.
- 3. Appreciate some pathophysiological conditions related to olfaction as anosmia, parosmia hypo and hyperosmia.

I-SMELL

Special senses

ONLY IN FEMALES' SLIDES

Extra

- Vision
- Hearing
- Smell
- Taste

- ▶ The olfactory (smell) system:
- The olfactory system is the least understood sensory system.
- It helps us enjoy life (e.G. Perfume, and food).
- Smell can be a powerful stimulant of human emotions.
- It is also a warning system alerting us to dangerous signals (e.G., Gas leak, spoiled food).
- It helps in choosing mates in some mammals (release of pheromones).
- Minute quantity of an odorant in the air can elicit a smell sensation.
- Methylmercaptan can be smelled when only 25×10
 12 g is present in each ml of air.
- This substance is mixed with natural gas so that even a small amount of gas leak can be detected.

Anatomy of the olfactory system

Olfactory mucus:

- in the roof of nasal cavity near the septum.
- Contain olfactory receptors (bipolar neurone).
- Axons collected in bundles called fila olfactoria.

ONLY IN FEMALES' SLIDES

Olfactory epithelium

Physiology of smell

ONLY IN MALES' SLIDES

- ▶Power of perceiving odors is called smell.
- ▶Olfactory receptors present in the roof of nasal cavity.
- Neurons with long cilia (olfactory hairs).
- ▶ Chemicals must dissolved in mucus for detection.
- Impulses transmitted via the olfactory nerve.
- Interpretation of smells is made in the olfactory cortex of the

brain.

Physiology of olfaction

	Molecules dissolve in mucus layer.
2	Combine with receptors on cilia.
3	Stimulate adenylat cyclase.
4	Increase intracellular camp.
5	Opening of Na channels.
6	Receptors potential.
7	AP in olfactory pathway.

- Human can differentiate between 2000-4000 odours.
- Adaptation can occur to pleasant and nasty smells due to changes both in receptors and central connections.
- ▶ The connection between olfactory epithelium and air molecules is easily abolished.

Mechanism of Excitation of the Olfactory Cells Mechanism of Olfactory Cell Stimulation

- Diffusion of the odorant substance, into the mucus.
- ▶ Odorant binds and activates the **receptor protein**, resulting in activation of **G-protein complex**.
- ▶ This causes activation of adenyl cyclase in the cell membrane.
- This enzyme converts ATP into cAMP (a second messenger).
- This causes activation of **sodium ion channels** resulting in Na influx.
- **Depolarization and excitation** of the olfactory neuron.
- Transmission of nerve impulses into CNS by the olfactory nerve.

Olfactory pathway

Fila olfactoria inter olfactory bulb ——> synapse with mitral and tufted cells:

- From tufted cells medial strai start then cross the midline & end on granular cells in opposite side (contralateral).
- Impulses travel from ONLY IN MALES' SLIDES olfactory tracts to the limbic system (also involved in emotions and memory).
- Impulses are interpreted in olfactory cortex deep in temporal lobe and base of frontal lobe

Olfactory pathway

Cont.

Neuronal connections of the olfactory system

ONLY IN MALES' SLIDES

ONLY IN FEMALES' SLIDES

First order neuron:

From olfactory epithelium to glomerulus.

Second order neuron:

- The olfactory bulb, where the second neurons of the olfactory pathway (mitral and tufted cells) are located.
- The axon of these second order neurons pass centrally as the olfactory tract.

Third order neuron:

The prepiriform area (area 28) is considered the primary olfactory cortex which contains the third order neurons.

- Impulses travel along the olfactory tracts to the limbic system:
 - Also involved in emotions and memory.
- Impulses are interpreted in olfactory cortex:
- Deep in temporal lobe and base of frontal lobe.

Pathophysiology of smell This slide is very important

- Anosmia: loss of smell sensation.
- Due to damage of olfactory epithelium.
- Some brain oberation
- genetic
- Hyposmia: decreased ability to smell.
- Due to Vitamin A deficiency.
- Inflamation
- age
- **Dysosmia**: distorted identification of smell.

- ▶ Parosmia (dysosmia):
- Alteration in smell sensation
- Altered perception of smell in the presence of an odor, usually unpleasant.
- Phantosmia: Perception of smell without an odor present.

- Agnosia: Inability to classify or contrast odors, although able to detect odors.
- Hyperosmia: increase in smell sensation adrenal insufficiency.

2-TASTE (Gustation)

Taste sensations

- Taste is the sensation produced when a substance in the mouth reacts chemically with taste receptor.
- Taste buds are specialized receptors widely scattered throughout the oral cavity.
 - Tongue
 - Soft palate
 - Inner surface of cheeks

A Taste bud is a specialised receptors in the oral cavity, but mainly on the tongue, some on the palate.

Cont.

- Sweet (sweet receptors respond to sugar, sacchrine, amino acids).
- 2. Sour (salt receptors respond to acids -free H ions-).
- 3. Bitter (alkaloids, other substances).
- 4. Salty (chemical salts (NaCl) m ions . Mental.
- 5. Umami (glutamate-"meat (beef) taste of steak").

We will talk about how the first 4 tastes are transmitted.

- 5 established taste
- **ONLY IN MALES' SLIDES**
- Taste buds on tongue not uniform

Distribution of taste buds on tongue (not uniform):

- I. Sweet tongue tip
- 2. Sour tongue margins
- 3. Bitter back of tongue

4. Salty - widely distributed

Taste buds

- ▶ Barrel shaped structures that contain taste receptors.
- Types of papillae:

The tongue is covered with 3 types of projections called papillae:

They are found in small protrusions (bumps, projections) called papillae

- Foliate papillae
- 2. Circumvallate
- 3. Fungiform
- 4. Filiform

(no taste buds on the mid dorsum of the tongue)

Filiform: Sharp - no taste buds

Fungiform: Rounded with taste buds

Circumvallate: Large papillae with taste buds

ONLY IN MALES' SLIDES

Taste Receptors:

Anatomy of taste buds

Structure of Taste bud:

- Gustatory cells with microvilli (gustatory hair).
- They are receptors cells with cilia projected through taste pore in between there are supporting cells.
- Hairs are stimulated by chemicals dissolved with saliva and transmit impulses to the brain.

ONLY IN MALES' SLIDES

Impulses are **ONLY IN MALES' SLIDES** carried to the gustatory complex by cranial nerves as taste buds are found in different areas:

- Facial nerve
- Glossopharyngeal nerve
- Vagus nerve

Taste sensation

- Molecules dissolve in the saliva » attached to receptors on cillia of gustatory cells » receptors potential » action potential.
- Combination between molecules and receptors are week (since taste can be easily abolished by washing mouth with water).

The taste pathway

Taste Pathway

First order neurons:

Taste fibres from the three cranials nerves form tractus solitarius » end in the nucleus of tractus solitarius (medulla).

Second order neurons:

From TS cross the midline to ascend in the medial lemniscus to the thalamus.

Third order neurons:

From thalamus project the cerebral cortex through thalamic radiation

Pathophysiology of taste sensation

- Ageusia (complete loss of taste).
 - Genetic
- Dysgeusia (disturbed taste).
 - Sexual hormonal effect (metallic taste)
- 3. Hypergeusia (adrenal insufficiency)
 - Common cold
 - inflamation
- 4. Hypogeusia: it can be caused by many diseases, and drugs such as penicillamine

Many diseases can produce hypogeusia. **ONLY IN MALES' SLIDES** In addition, drugs such as captopril and penicillamine, which contain sulfhydryl groups, cause temporary loss of taste sensation.

- Taste sensation can be modified by Meraculin (from Miracle fruit):
- When Meraculin is applied to tongue, it makes acids taste sweet.

Doctors' notes

- Dr mentioned for taste to be registered by brain, food particules have to dissolve in saliva.
- Taste is condensed in the tip, back and periphery of tongue. Mid dorsum has an insignificant amount so it's dismissable.
- Gustatory cells = Taste cells (they're the same thing).
- Dr mentioned he might bring a picture of the tongue and ask which areas of the tongue have a condensation for which taste (for example: tip of tongue → Sweet).
- There are 4 main taste sensations (Sweet, sour, bitter, salty) and I extra called "Umami" (Umami works on the sour and salty regions, it's the "Beef taste" receptors).
- ▶ The Receptor-Molecule bond is weak \rightarrow taste of something can be washed off from mouth.

يعنى لأن الرابطة ضعيفة بين المستقبل و الأكل نفسه لو نغسل فمنا بالموية بس يروح الطعم

- For smell to be registered, molecules HAVETO BE DISSOLVED IN MUCUS.
- Adaptation is when a person gets used to a smell so he no longer feels it.

زي مثلاً لما واحد يروح سوق السمك، بالبداية الريحة ما تطاق كريهة بعدين بعد ربع ساعه تسوق يصير ما يشمها

- Olfactory pathways:
- A. Frontal cortex
- B. Hypothalamus amygdala
- C. Hippocampus
- > Smell is registered in Area 28 of the brain.

Thank you!

اعمل لترسم بسمة، اعمل لتمسح دمعة، اعمل و أنت تعلم أن الله لا يضيع أجر من أحسن عملا.

The Physiology 436 Team:

Females Members:

Males Members:

Reema Alotaibi

Abdullah Alsaeed

Rana Barasain

Shrooq Alsomali

Amal Algarni

Najd AlTheeb

Team Leaders:

Lulwah Alshiha

Laila Mathkour

Mohammad Alayed

Contact us:

References:

- Girls' and boys' slides.
- Guyton and Hall Textbook of Medical Physiology (Thirteenth Edition.)