## **Urea Cycle**

Dr. Sumbul Fatma
Medical Biochemistry Unit
Department of Pathology

### **Objectives:**

- Understand the reactions for removal of α-amino group of amino acids and formation of ammonia
- Identify the importance of blood transport of ammonia to the liver in the form of glutamine/alanine
- Understand the importance of conversion of ammonia into urea by the liver through urea cycle
- Identify urea as the major form for the disposal of amino groups derived from amino acids
- Identify the causes (hereditary & acquired), clinical manifestations and management of hyperammonemia

### **Background:**

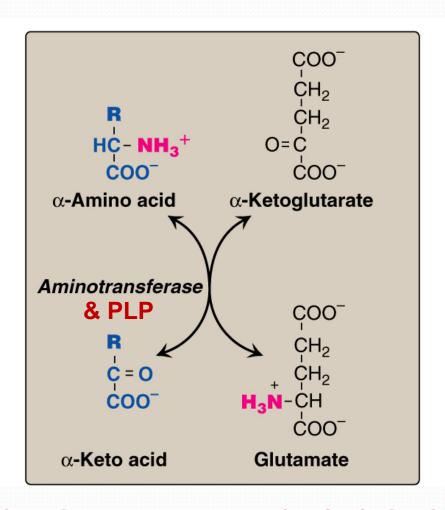
- ➤ Unlike glucose and fatty acids, amino acids are not stored by the body.
- Amino acids in excess of biosynthetic needs are degraded.
- > Degradation of amino acids involves:

Removal of  $\alpha$ -amino group  $\longrightarrow$  Ammonia (NH<sub>3</sub>)

Remaining carbon skeleton ——— Energy metabolism

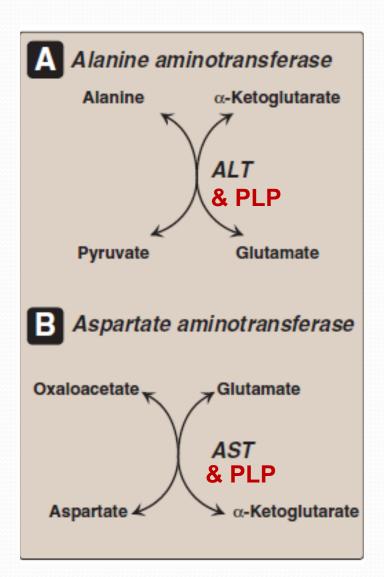
# Removal of a-amino group, formation of ammonia and its transport to liver

- A: Removal of α-amino group of amino acids and formation of ammonia:
  - 1. Transamination to glutamate
  - 2. Oxidative deamination of glutamate

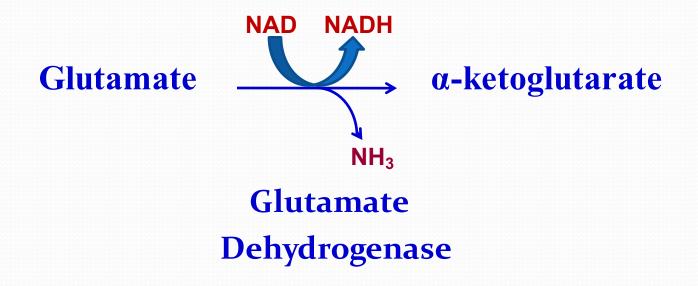

### B: Blood transport of ammonia into liver:

- 1. in the form of glutamine (most tissue)
- 2. in the form of alanine (muscle)

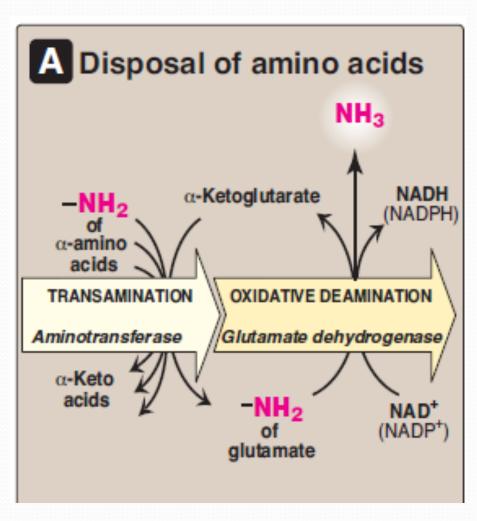
# A: Removal of α-amino group & formation of ammonia


- Amino groups of amino acids are funneled to glutamate (Why?) by transamination reactions with α-ketoglutarate
- ➤ Glutamate is unique. It is the only amino acid that undergoes rapid oxidative deamination
- > Oxidative deamination of glutamate will release NH<sub>3</sub> and re-generate α-ketoglutarate

### **Transamination**




PLP: Pyridoxal phosphate, a co-enzyme that is derived from vitamin B6


### **Transamination by ALT & AST**



### **Oxidative Deamination**



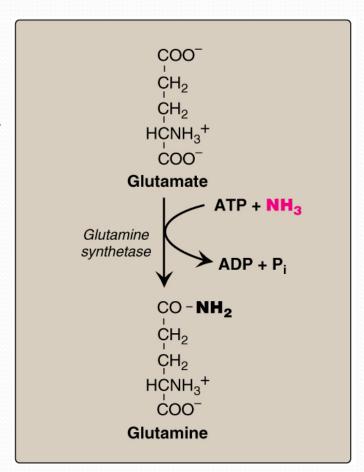
# Summary: Removal of α-amino group of amino acid & formation of ammonia



# B: Transport of NH<sub>3</sub> from peripheral tissues into the liver

- > Ammonia is produced by all tissues and the main disposal is via formation of urea in liver
- ➤ Blood level of NH<sub>3</sub> must be kept very low, otherwise, hyperammonemia and CNS toxicity will occur (NH<sub>3</sub> is toxic to CNS)
- ➤ To solve this problem, NH<sub>3</sub> is transported from peripheral tissues to the liver via formation of:

Glutamine (most tissues)


Alanine (muscle)

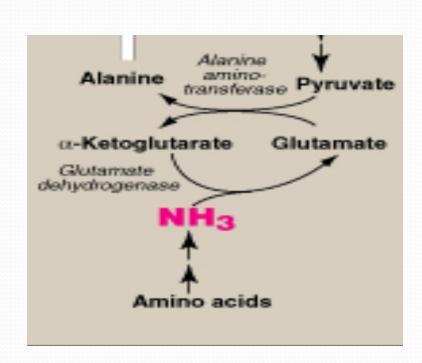
## Transport of NH<sub>3</sub> from peripheral tissues into the liver

#### **Cont'D**

### From most peripheral tissues:

NH<sub>3</sub> is transported Into the liver through forming glutamine by glutamine synthetase



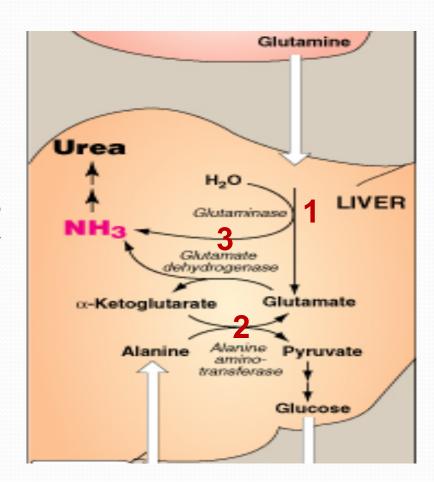

## Transport of $NH_3$ from peripheral tissues into the liver

#### From the muscle:

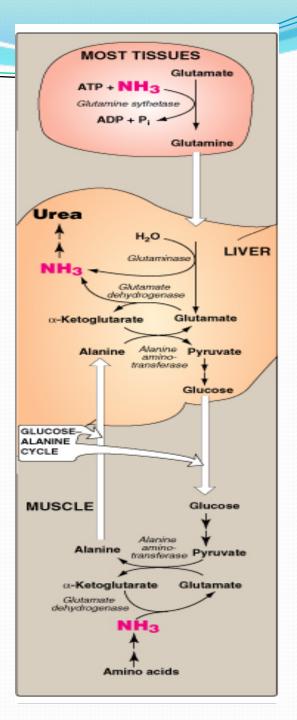
First, NH<sub>3</sub> will be transferred into α-ketoglutarate to form glutamate

Then, glutamate will give its amino group to pyruvate to form alanine by ALT

Therefore, NH<sub>3</sub> is transported from muscle into the liver through forming alanine




**Cont'D** 


# Release of ammonia from glutamine and alanine in the liver

#### In the Liver:

- 1. *Glutamine* is converted into glutamate by glutaminase.
- 2. Alanine will give its amino group to  $\alpha$ -ketoglutarate to form glutamate by ALT.
- 3. *Glutamate* is converted into  $\alpha$ -ketoglutarate and releasing NH<sub>3</sub> by glutamate dehydrogenase.



**Summary** Blood transport of NH<sub>3</sub> from peripheral tissues (in the form of glutamine and alanine) into the liver and the release of NH<sub>3</sub> back in the liver to start the urea cycle

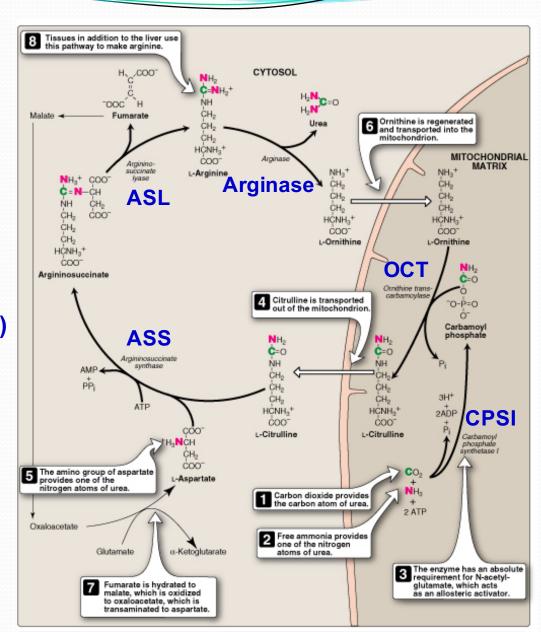


### **Urea Cycle**

- ➤ Urea is the major form for disposal of amino groups derived from amino acids
- > Urea cycle occurs in the liver
- ➤ One nitrogen of urea is from NH<sub>3</sub> and the other nitrogen from aspartate
- ➤ Urea is transported in the blood to the kidneys for excretion in urine

## Urea Cycle CONT'D

The five enzymes of urea cycle:


Carbamoyl phosphate synthetase I

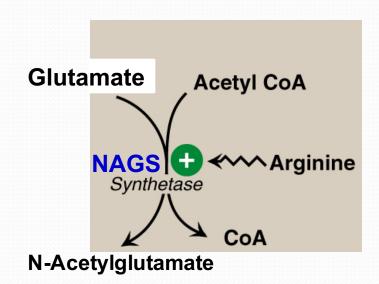
**Ornithine transcarbamoylase (OCT)** 

**Argininosuccinate synthase** 

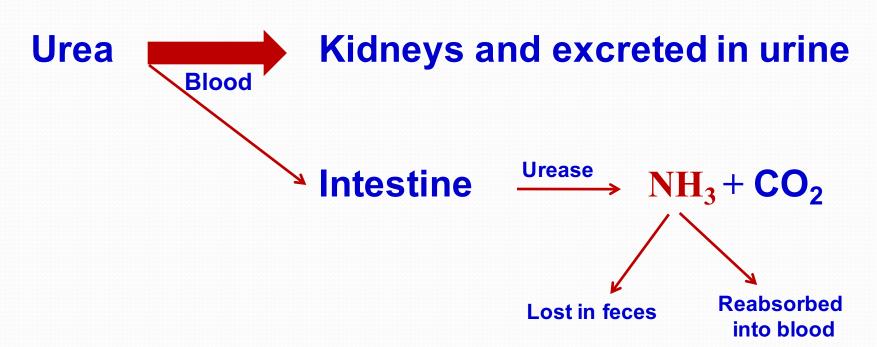
**Argininosuccinate lyase** 

**Arginase** 




### **Urea Cycle: Regulation**

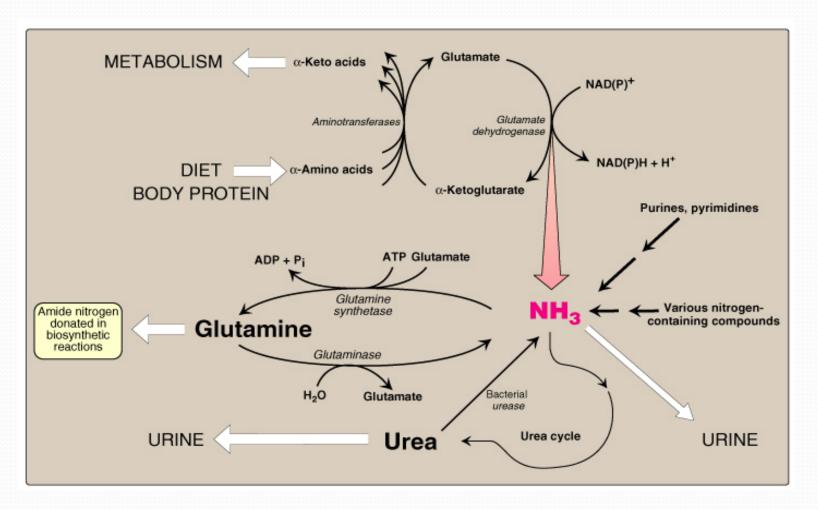
Rate-limiting enzyme of urea cycle: Carbamoyl phosphate synthetase I (CPSI)


Allosteric activator of CPSI: N-Acetylglutamate

N-Acetylglutamate is synthesized by: N-Acetylglutamate synthetase (NAGS) in presence of arginine

NAGS deficiency is efficiently treated with Carbaglue, a CPS1 activator




### **Fate of Urea**



The action of intestinal urease to form NH<sub>3</sub> is clinically significant in renal failure:



### **Sources and Fates of Ammonia**



Normal blood level of ammonia: 5 – 50 µmol/L

### **Hyperammonemia**

- > Acquired hyperammonemia:
  - 1. Liver diseases:

**Acute: Viral hepatitis or hepatotoxic** 

Chronic: Cirrhosis by hepatitis or alcoholism

- 2. Renal failure
- > Inherited hyperammonemia:

Genetic deficiencies of any of the 5 enzymes of urea cycle or the activator enzyme for CPSI:

CPSI, OTC, ASS, ASL, arginase or NAGS

### **Inherited Hyperammonemia**

> Ornithine transcarbamoylase deficency:

X-linked recessive

Most common of congenital hyperammonemia Marked decrease of citrulline and arginine

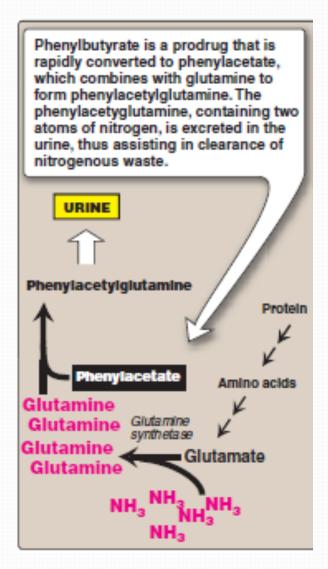
> Others: Autosomal recessive

### **Clinical Presentation of Hyperammonemia**

- > Lethargy and somnolence
- > Tremors
- Vomiting and cerebral edema
- **Convulsions**
- > Coma and death

### **Management of Hyperammonemia**

- 1. Protein restriction
- 2. Volume repletion to maintain renal function Use 10% dextrose in water but limit the use of normal saline
- 3. Ammonia removal by hemodialysis &/or drugs
- 4. Avoid drugs that increase protein catabolism (eg, glucocorticoids) or inhibit urea synthesis (eg, valproic acid), or have direct hepatotoxicity


### **Drug Treatment of Hyperammonemia**

- A. Drugs that scavenge ammonia by creating an alternate pathway to excrete N<sub>2</sub>- precursors:
  - 1. I.V. Sodium phenylacetate & sodium benzoate\_(Ammonul)
  - 2. Oral sodium phenyl butyrate (Buphenyl)
  - 3. I.V. Arginine: for all UCDs except UCD due to arginase deficiency (argininemia)
- B. Activators to CPSI (Carglumic acid "Carbaglu"): For hyperammoniemia due to NAGS deficiency

### **Sodium phenyl butyrate (Buphenyl)**

Sodium phenyl butyrate (Buphenyl): Prodrug that is converted to phenylacetate.

Phenylacetate condenses with glutamine forming phenylacetylglutamine that is excreted in urine



### References

• Lippincott's Illustrated Reviews in Biochemistry 6<sup>th</sup> Edition pages-253-258