BLEEDING DISORDERS

BY:

DR. FATMA AL-QAHTANI CONSULTANT HAEMATOPATHOLOGIST HEAD OF HAEMATOLOGY UNIT ASSISTANT PROFESSOR DEPARTMENT OF PATHOLOGY, COLLEGE OF MEDICINE KING SAUD UNIVERSITY

LEARNING OBJECTIVES

- To know the main sequence of events in the coagulation pathways
- To know the principles underlying the prothrombin time (PT), activated partial thromboplastin time (APTT) and thrombin time (TT)
- To know the principles of investigation of a patient suspected of having a haemostatic defect

cont'd...

- To know the mode of inheritance, clinical presentation, method of diagnosis and principles of treatment of haemophilia A (factor FVIII deficiency), haemophilia B (factor IX deficiency), haemophilia C (factor XI deficiency) and von Willebrand disease (VWD)
- To know the alterations in the haemostatic and fibrinolytic mechanisms associated with disseminated intravascular coagulation (DIC) and the causes of DIC
- To understand normal fibrinolysis and the principles of fibrinolytic therapy

cont'd...

- To understand the principles of anticoagulant therapy with unfractionated heparin, low molecular weight heparin and warfarin and to know about the laboratory control of such therapy
- To be aware of the natural anticoagulant mechanisms in blood and some of the prothrombotic states (thrombophilia)
- To know the effects of vitamin K deficiency and liver disease on the clotting mechanisms

Normal Haemostasis

The cessation of bleeding following trauma to blood vessels results from three processes:
(i) the contraction of vessel walls;
(ii) the formation of a platelet plug at the site of the break in the vessel wall; and
(iii) the formation of <u>a fibrin clot</u>.

Early platelet fibrin hemostatic plug.

Late platelet fibrin hemostatic plug.

Normal coagulation mechanism

- The mechanisms involved in the clotting cascade were elucidated in the period 1950-70.
- The clotting sequence is initiated *in vivo* by tissue factor (TF) exposed on the surface of activated endothelial cells and leucocytes and on most extravascular cells in an area of tissue damage.
- Calcium is required at several stages in the coagulation sequence.

Pathways involved in fibrin generation after the activation of coagulation *in vivo* by TF. The suffix 'a' denotes the active form of each coagulation factor. *Notes:* Green arrows - actions of thrombin; red arrows - actions of other active enzymes; dashed blue arrows - inhibition.

The sequence of coagulation *in vitro* brought about by either contact activation of factor XII or by addition of tissue factor. The suffix 'a' denotes the active form of each coagulation factor. The former is the basis of the activated partial thromboplastin time (APTT) and the latter the prothrombin time (PT).

The fibrinolytic mechanism

After haemostasis has been achieved, the body has a mechanism for the enzymatic lysis of clots. The dissolution of the fibrin into fibrin-degradation products (FDPs) is carried out by the proteolytic plasma enzyme plasmin. Plasmin is present in the plasma in an inactive form.

The fibrinolytic mechanism.

Tests for clotting defects

There are three basic tests that are widely used, all performed on platelet-poor plasma obtained by centrifugation:

- 1) The *activated partial thromboplastin time* (APTT), which estimates the activity of factors XII, XI, IX, VIII, X, V, II and fibrinogen (the 'intrinsic system').
- 2) The *prothrombin time* (PT), which estimates the activity of factors VII, X, V, II and fibrinogen (the 'extrinsic system').

cont'd...

3) The *thrombin time*, adding thrombin to plasma and measuring the time taken to clot, which is prolonged when there is an inherited or acquired deficiency of fibrinogen, or an inherited or acquired abnormal fibrinogen molecule (dysfibrinogenaemia) or in the presence of heparin or raised levels of FDPs.

Congenital coagulation disorders

- Blood clotting abnormalities can be conveniently divided into two categories, congenital defects and acquired defects.
- There is a group of patients who complain of excessive bleeding, either spontaneous or following trauma, usually starting early in life, and who frequently have a family history of a similar condition.
- These patients usually have one of three diseases:
 1) haemophilia A (Factor VIII deficiency)
 2) haemophilia B (Factor IX deficiency)
 3) haemophilia C (Factor XI deficiency)
 4) VWD

Haemophilia A (factor VIII deficiency)

The term 'haemophilia', first used by Schönlein in 1839, was applied to a lifelong tendency to prolonged haemorrhage found in males and dependent on the transmission of a sex-linked abnormal gene.

Patients with factor VIII deficiency and those with factor IX deficiency.

THE BLEEDING DISORDERS INCLUDE

Inherited and acquired blood vessel disorders

Inherited and acquired platelets disorders

Inherited and acquired coagulation disorders

HEREDITARY COAGULATION DISORDERS

HAEMOSTASIS PLASMA COAGULATION FACTORS

FI	FIBRINOGEN	FIX	CHRISTMAS FACTOR	ATIII	ANTI-THROMBIN III
FII	PROTHROMBIN	FX	STUART-POWER FACTOR	-	PREKALLIKREIN (FLETCHER) FACTOR
FIII	TISSUE FACTOR	FXI	PLASMA THROMBOBLASTIN ANTECEDENT	-	HMW KININOGEN FITZGERALD FACTOR
FIV	CALCIUM IONS	FXII	HAGEMAN (CONTACT) FACTOR	TM	THROMBOMODULIN
FV	PROACCELERIN	FXIII	FIBRIN STABILISING FACTOR	TFPI	TISSUE FACTOR PATHWAY INHIBITOR
FVII	PROCONVERTIN	PC	PROTEIN C		
FVIII	ANTIHAEMOPHILIC FACTOR	PS	PROTEIN S		

Thrombin

Fibrinogen → Fibrin monomer + peptides A & B Fibrin Manomers
Aggregates Fibrin Aggregates
Fibrin s (polymerisation) Fibrin s -Fibrin (cross linked) XIII

Fibrin s = Soluble in 5m urea

Fibrin i = Insoluble in 5m urea

Early platelet fibrin hemostatic plug.

Late platelet fibrin hemostatic plug.

INHERITED COAGULATION DISORDERS

HAEMOPHILIA

Factor VIII Deficiency
 Factor IX Deficiency (Christmas Disease)
 Factor XI Deficiency
 Von Willebrand Disease
 Other Factors <u>Deficiency</u>

CLINICAL FEATURES OF HAEMOPHILIA

Correlation of coagulation factor activity and disease severity in haemophilia A or hemophilia B

Coagulation factor activity (percentage of normal)

Clinical manifestations

Severe disease Frequent spontaneous bleeding episodes from early life Joint deformity and crippling if not adequately teated

Moderate disease Post-traumatic bleeding occasional spontaneous episodes

Mild diesease Post-traumatic bleeding

5 - 20

1 - 5

<1

Detection of carriers and antenatal diagnosis

- Genetic mutational analysis allows carriers to be identified with accuracy and is the method of choice.
- Prenatal diagnosis of haemophilia can be made by analysis of fetal DNA, which can be obtained either by chorionic villus sampling between 11¹/₂ and 14 weeks of gestation or by amniocentesis after 16 weeks.

Clinical features

- The characteristic clinical feature of severe haemophilia is the occurrence of spontaneous bleeding into the joints and less frequently into the muscles.
- The presenting symptom is pain in the affected area and this can be very severe.
- > Bleeding into joints results in crippling deformity.

cont'd...

The knees, elbows and ankles are most commonly affected.

- Haematuria, epistaxis and gastrointestinal bleeding are less common.
- Intracranial bleeding is the most common cause of death from the disease itself.

Haemarthrosis of the shoulder joint in a patient with haemophilia A.
The frequency of bleeding sites in 207 haemophiliacs.			
Lesion or operation	Percentage		
Haemarthroses	79		
Muscle haematomas	15		
Haematuria			
Epistaxis			
Gastrointestinal bleeding	Each about 1-2		
Dental Extraction	Total 6		
Major surgery			

Diagnosis

The possibility of haemophilia is suggested by the finding of a normal PT and a prolonged APTT. Confirmation is by a specific assay of factor VIII coagulant activity with normal VWF. The combination of a normal PT and a prolonged APTT is most often caused by lupus anticoagulant.

Treatment of Haemophilia

- Treatment should be given at the earliest sign of spontaneous or post-traumatic bleeding.
- Treatment consists of intravenous injections of virucidally treated plasma-derived high purity factor VIII concentrate or recombinant factor VIII preparations to maintain plasma factor VIII coagulant activity to between 30% and 100% of normal.
- Approximately 25% of patients with haemophilia, usually after treatment with factor VIII on 10-20 occasions, develop antibodies that inhibit its functional activity and in 5-10% of patients these are of high titre.

cont'd...

- Haemorrhage in patients with high-titre inhibitors may require treatment with 'bypassing agents' such as recombinant factor VIIa or FEIBA (factor eight inhibitor bypassing activity; that is, a plasma-derived activated prothrombin complex concentrate), which activate the coagulation cascade below the level of factor VIII.
- The administration of factor VIII may be avoided in mild to moderate haemophilia by using the vasopressin analogue desmopressin (DDAVP), which causes a temporary increase in factor VIII and VWF by provoking the release of these factors from endothelial cells. DDAVP is used intravenously, subcutaneously or intranasally.

Deficiency of other clotting factors

Single deficiencies of factors other than VIII and IX are very rare, but all possible deficiencies have been found and all except contact factor (e.g. factor XII) deficiency give rise to bleeding disorders of varying degrees of severity.

Acquired coagulation disorders

The hepatocytes are the major cell type involved in the synthesis of all the coagulation factors. Hence, severe liver disease may result in bleeding, due both to a deficiency of several coagulation factors and to an abnormality in the structure and function of fibrinogen, as well as thrombocytopenia due to hypersplenism.

Haemophilia B (Factor IX deficiency, Christmas disease)

- The clinical features and inheritance of factor IX deficiency are identical to those in factor VIII deficiency. Factor IX deficiency affects about 1 in every 50,000 males (i.e. it is less frequent than factor VIII deficiency). The factor IX gene is located on the long arm of the X-chromosome, is much smaller than the factor VIII gene (containing eight exons).
- The APTT is prolonged and the PT normal. The diagnosis can be made by assay of the factor IX level. Plasma-derived factor IX concentrate or recombinant factor IX is available and should be administered intravenously as soon as spontaneous or post-traumatic bleeding starts. Factor IX has a longer halflife in the plasma (18-24 hours) than factor VIII and hence can be given at less frequent intervals.

Genetics, prevalence and biochemistry

- Deficiency of factor VIII results from an abnormality in the factor VIII gene, which is very large (186 kilobases, 26 exons) and lies at the tip of the long arm of the X-chromosome.
- Ranging form single-point mutations to large deletions.
- Half of all severe cases are due to an inversion involving intron 22.
- The prevalence of this disorder is about one per 10 000 males.

cont'd...

- Females with haemophilia have been observed extremely rarely and these are either homozygotes for the abnormal gene or are heterozygotes in whom the normal X-chromosome has not produced sufficient quantities of factor VIII due to lyonization.
- The factor VIII molecule is a protein with a molecular weight of 8 *X* 10⁴ daltons. In the plasma, factor VIII is only found complexed with VWF, which acts as a carrier and prolongs its plasma half-life.

The Abnormalities in Von Willebrand Disease

Abnormal bleeding time Prolonged APTT & normal PT Deficiency of Factor VIII Clotting activity Deficiency of Von Willebrand Factor (Ristocetin Co-factors) Low Von Willebrand Antigen Abnormal Platelet Aggregations

Diagnosis of Haemophilia A & Von - Willebrand's

Haemophilia A	W Disease		
Bleeding time normal	Bleeding time abnormal		
PT normal	PT normal		
PTT abnormal	PTT abnormal		
Factor VIII C ↓	Factor VIII C ↓		
VWf : normal	vWf↓		
Factor VIII related antigen	vWF antigen 4		
vWF antigen: normal			
Ristocetin co-factor normal	Ristocetin co-factor low		
Platelets aggregation	Platelets aggregation		
normal	abnormal		

Von Willebrand disease

• This is the most common inherited bleeding disorder, with a prevalence of up to 1%, although most mild cases are undiagnosed. It was described by von Willebrand in 1926 as occurring in several families on islands in the Baltic (Åland Islands). It is an autosomal disorder characterized by mild, moderate or severe bleeding. The bleeding results from either a qualitative abnormality or a deficiency of VWF. This factor is a protein with a molecular weight of 2.7 X 10^5 daltons and exists in the plasma as a variable-sized polymer, ranging from a dimer to a molecule containing 50-100 subunits. It has a dual function: first, it is an adhesive molecule that binds platelets to subendothelial tissues; second, it acts as a carrier for factor VIII. The reduction in VWF results in a reduction in factor VIII concentration (usually measured as clotting activity).

cont'd...

- The gene for VWF is present on chromosome 12.
- Some defects result in a reduction in the plasma concentration of structurally normal VWF molecules, but others cause different qualitative abnormalities in the VWF molecule. VWD has been divided into three types: in types 1 (most frequent) and 3 there is a partial reduction or nearly complete absence of VWF molecules, respectively, and in type 2 there are qualitative abnormalities.
- Spontaneous bleeding is usually confined to mucous membranes and skin and takes the form of epistaxes and ecchymoses.
- Bleeding into joints and muscles is rare except in type 3 disease.

cont'd...

- The laboratory findings include a prolonged PFA closure time (if done), usually a prolonged APTT and reduced factor VIII clotting activity, reduced levels of VWF and impaired ristocetin-induced platelet aggregation; however, it is important to remember that the PFA and APTT may be within normal limits.
- For mildly or moderately affected patients with type 1 disease, desmopressin (DDAVP), which increases plasma levels of both VWF and factor VIII, should be tried before using blood products.
- Very high purity VWF may be used.
- The antifibrinolytic drug tranexamic acid may be used for treating epistaxis or menorrhagia and in combination with DDAVP or VWF-containing concentrates to manage dental extractions.

<u>Treatment of Haemophilia A, B and Von Willbrand's</u> <u>Disease</u>.

- 1. Local Measures
- 2. Replacement Therapy:
 - a. Cryoprecipitate
 - b. Factor VIII concentrate
 - c. Factor IX concentrate for Haemophilia B
 - d. Fresh frozen plasma for other factors deficiency
 - e. DDAVP (1-deamino 8D-arginine vasopressin) 0.3 mcg/kg. In mild haemophilia A and von willbrand's disease. Maximum of 3 doses with at least 8 hours between each dose.

Should be used with tranexamic acid 15 mg/kg I.V or oral 15 mg/kg 8 hourly.

- 3. Treatment of patients with inhibitors
- 4. Surgical and orthopoedic treatment.
- 5. Management of patients with hepatitis B, C chronic liver disease and HIV infections.

6. Liver transplant

Treatment of Haemophilia

- 1. Factor VIII replacement therapy
 - a. <u>Immunoaffinity –purified Factor VIII preparation</u> Dose of Factor VIII to be infused (units) = <u>weight (kg) x</u> <u>increment needed (u/dL)/2</u>
 - b. Reconbinant Factor VIII (five different commercial preapartions)
- 2. DDAVP (desmopressin) I.V or S.C or nasal spray
- 3. Local supportive measures
- 4. Prophylactic treatment
 - Factor VIII three time / week
 - Vascular access device such as Port-a-Catch if venous access is difficult
- 5. Social and psychological care
- 6. Multidisciplinary team management
 - Haematologist, Dental, Orthopaedic, Physiotherapist
- 7. Gene therapy.

Level of Factor VIII Desirable 15 mins. After the First Transfusion (IU/DL)

Lesion

Early haemarthroses	20-30 %	
Minor external bleeds		
Dental Extractions	50-100 %	
Severe Haemarthroses		
Internal Haemorrhage		
Major surgery	70-100 %	
Serious accidents		

Formula for calculating the dose of factor

 Body weight kgs x Desired % rise of VIII
 = dose of factor VIII units

 2
 every 8hrs/12hrs

Treatment of Inhibitors

Development of inhibitors occurs in 5-10% of patients.

- a. High dose Factor VIII
- b. Recombinant activated Factor VII (VIIa)
- c. Activated prothrombin complex concentrates
 - (FEIBA Factor VIII inhibitor by passing activity).
- d. Immunosuppresion with cyclosphosphamide and other agents
- e. Intravenous immunoglobulin
- f. High dose factor VIII

The New Classification of Von -Willebrand's Disease

Type 1. Partial quantitative deficiency of vWF.

Type 2. Qualitative deficiency of vWF.

2A. Decreased platelet dependent function associated with absent high molecular weight multimers of vWF.

2B. Variants with increased affinity for platelets Glyloprotein – 1b.

2M. As 2A but high molecular weight multimers of vWF present.

2N. Variants with decreased affinity for factor VIII.

Type 3. Virtually complete deficiency of vWF.

Classification of von Willebrand disease.

Type 2 Funct	ional abnormality		
-)p	ional abhormanty		
Type 3 Comp	olete deficiency		

Secondary classification of type 2 VWD

Subtype	Platelet-associated function	Factor VIII binding capacity	High MW VWF multimers	
2A	Decreased	Normal	Absent	
2B	Increased affinity for GPIb	Normal	Usually reduced/absent	
2M 2N	Decreased Normal	Normal Reduced	Normal or ultra large Normal	

GPIb, glycoprotein Ib; MW, molecular weight; VWD, von Willebrand disease; VWF, von Willebrand factor.

<u>Treatment of Von Willebrand</u> <u>Disease</u>

- a. Local measures
- b. Antifibrinolytic agent (tranexamic acid for mild bleeding)
- c. DDAVP infusion for type I VWD
- d. High purity factor VWF concentrates for patient with very low VWF levels
 - Factor VIII concentrate may also be given for more rapid correction.
- e. Social and psychological care.

FACTOR XIII DEFICIENCY

Bruising with minor injury
Hematoma after trauma
Bleeding (secondary bleeding)
Abnormal healing of wounds with excessive scar formation (keloid formation)

LABORATORY DIAGNOSIS OF FACTOR XIII DEFICIENCY

Normal PT & Normal APTT
Normal Bleeding time & Normal Platelet aggregation
Normal fibrinogen level
Abnormal clot stability with five molar urea
Low Factor XIII level

ACQUIRED COAGULATION DISORDERS

DISSEMINATED INTRAVASCULAR COAGULATION

'CONSUMPTION COAGULATIONPATHY'

'DEFIBRINATION SYNDROME'

Causes of disseminated intravascular coagulation

Infections

Gram-negative and meningococcal septicaemia Clostridium welchii septicaemia Severe Falciparum malaria Viral infection – varicella, HIV, hepatitis, cytomegalovirus

Malignancy

Widespread mucin-secreting adenocarcinoma Acute promyelocytic leukaemia

Obstetric complications
 Amniotic fluid embolism
 Premature separation of placenta
 Septic abortion

Causes of disseminated intravascular coagulation (cont'd...)

***Hypersensitivity reactions**

Anaphylaxix Incompatible blood transfusion ***Widespread tissue damage** Following surgery or trauma After severe burns *Vascular abnormalities Kasabach-Merritt syndrome Leaking prosthetic valves Cardiac bypass surgery *Miscellaneous Liver failure Snake and invertebrate venoms Hypothermia Heat stroke Acute hypoxia

Disseminated intravascular coagulation (DIC)

- DIC describes a process in which there is a generalized activation of the clotting system followed by marked activation of the fibrinolytic system.
- Acute DIC may be associated with premature separation of the placenta, amniotic fluid embolism or shock, and may also be seen in certain bacterial infections such as meningococcal septicaemia.
- It is a common complication following intravascular haemolysis of red cells after a mismatched transfusion.

- Chronic DIC is seen when there is retention of a dead fetus as well as in patients with disseminated carcinoma, lymphoma and leukaemia (especially acute promyelocytic leukaemia).
- Clotting cascade may be activated in various ways; namely:
 - 1) by the release of TF from damaged tissues
 - 2) by damage to endothelial cells
 - 3) by abnormal activators of coagulation

- Activation of the cascade leads to the generation and dissemination of large amounts of thrombin in the circulation, the activation of platelets and the formation of intravascular microthrombi.
- As a consequence of the fibrin formation, the fibrinolytic mechanism is activated, resulting in high concentrations of FDPs, including D-dimers. This leads to further haemostatic impairment, since FDPs inhibit fibrin clot formation by interfering with the polymerization of the fibrin monomer. FDPs also interfere with the aggregation of platelets.

- The haemorrhagic manifestations may be so severe in acute DIC as to lead to death
- In chronic DIC, the haemorrhagic tendency may be mild or moderate. However, some patients with chronic DIC are asymptomatic because the activation of the clotting and fibrinolytic systems is finely balanced and the production of clotting factors and platelets is sufficiently increased to compensate for their increased consumption.

Diagnosis

The investigations of value in the diagnosis of acute or chronic DIC are as follows:

- *The platelet count*: Platelets become enmeshed in the fibrin clots on the vascular endothelium and thrombocytopenia is an early and common sign.
- *The APTT and the PT*: These are usually prolonged, due to the depletion of clotting factors, especially in acute DIC.
- *The fibrinogen concentration*: This is reduced.

- *The thrombin time*: This may be prolonged due to a combination of a low fibrinogen and excessive amounts of FDPs.
- *Estimation of FDPs using the D-dimer assay*: FDPs including D-dimers are increased. D-dimers can be detected by rapid immunological tests in which latex particles coated with monoclonal antibody directed against D-dimer are agglutinated by D-dimers present in plasma.

Treatment

Treatment is aimed at preventing further coagulation by removal of the initiating cause.

Supported with transfusions of blood, fresh-frozen plasma and platelet concentrates in order to restore blood volume and replace clotting factors and platelets.

Acquired haemophilia

A rare but devastating acquired bleeding disorder is due to autoantibody-mediated factor VIII deficiency. It can occur in either sex, is more common in the elderly and has a high mortality. It is treated with 'bypassing agents' such as recombinant factor VIIa or FEIBA and immune suppression.

Anticoagulant drugs

The two most frequently used anticoagulant drugs are heparin and vitamin K antagonists such as warfarin. Parenteral heparin is used in patients with deep vein thrombosis (DVT) or pulmonary embolism (PE) and is followed by oral warfarin therapy. Subcutaneous heparin is used to reduce the risk of DVT and PE in hospitalized patients, including those undergoing surgery (especially hip surgery). Heparin does not cross the placenta and is therefore the preferred drug when anticoagulation is required during pregnancy. The oral anticoagulant warfarin is administered initially for three months to patients with DVT or PE and may be indicated long term to prevent recurrent venous thrombosis. Long-term warfarin is also used after the insertion of mechanical heart valves and in patients with atrial fibrillation.

Heparin

Standard unfractionated heparin is an acidic mucopolysaccharide (average molecular weight 1.5 X 10⁴ daltons) that has to be administered intravenously or subcutaneously. When administered intravenously, its biological half-life is 1 h. Heparin potentiates the action of AT, a molecule that inactivates the activated serine protease coagulation factors thrombin (IIa) and Xa.

Low molecular weight heparin (average molecular weight 4-5 X 10³ daltons) is used subcutaneously, it inactivates Xa to a greater extent than IIa and has a longer biological half-life. Examples of low molecular weight heparins currently in use are dalteparin, enoxaparin and tinzaparin. Fondaparinux is a synthetic pentasaccharide that induces AT specifically to inhibit Xa.

• For the treatment of thrombosis or embolism, standard heparin may be administered as a bolus of 5000 units (70 units/kg) intravenously, followed by a continuous intravenous infusion of 15-25 units/kg/h. Treatment is monitored by performing the APTT, the heparin dosage being altered so as to maintain the APTT at 1.5-2.5 times the normal value. The treatment of choice is now low molecular weight heparin given subcutaneously once a day with no monitoring.

 Haemorrhage due to overdosage is managed by stopping the heparin and, if necessary, by giving protamine sulphate intravenously. Side effects of heparin include heparin-induced thrombocytopenia (HIT) via an antibody-based mechanism, osteoporosis (following long-term use), alopecia and hypersensitivity reactions.

Warfarin sodium

This is a coumarin derivative that is administered orally once a day. It is a vitamin K antagonist and interferes with the carboxylation and hence with the functional activity of factors II, VII, IX and X, protein C and protein S. After the first dose, clotting factor activity is reduced in the order VII, IX, X and II.

It is customary to prescribe 5 or 10 mg warfarin on the first day and subsequent doses are based on the INR. The therapeutic range for the INR is usually 2-3. A higher range of 3-4 is used for recurrent DVT or PE, despite an INR >2 and for patients with certain prosthetic heart valves.

Bleeding is controlled by stopping the warfarin by administering vitamin K and, if necessary, administering prothrombin complex concentrates.

Warfarin crosses the placenta and may cause developmental abnormalities such as chondrodysplasia, microcephaly and blindness. It is therefore contraindicated in the first trimester of pregnancy. It should also not be administered during the last few weeks of pregnancy because of its anticoagulant effect on the fetus and the consequent risk of fetal or placental haemorrhage.

Direct oral thrombin inhibitors and direct oral Xa inhibitors

Drugs that directly inhibit thrombin (e.g. dabigatran etexilate) or Xa (e.g. rivaroxaban, apixaban, edoxaban) have been developed as oral anticoagulants that offer an alternative to warfarin in the treatment of venous thromboembolism and atrial fibrillation. They can be given in fixed dose without monitoring; they have relatively short half-lives (in the order of 9-17 hours) but no antidote.

Investigation of a patient with abnormal bleeding

- A most important step in the diagnostic process is taking a good history from the patient.
- The screening tests that are useful in investigating a patient who gives a history of excessive bleeding are the following:
 - A blood count, including a platelet count, and examination of a blood film.
 - The prothrombin time and the activated partial thromboplastin time.
 - The thrombin time or fibrinogen assay.
cont'*d*...

• The PFA 100 can be used as a screening test for abnormal platelet function and platelet aggregation studies. If any of these tests is found to be abnormal, further specialized tests may be necessary.

Natural anticoagulant mechanisms and the prothrombotic state (thrombophilia)

There are natural anticoagulant mechanisms in the plasma that prevent localized fibrin formation from becoming widespread. The most important molecules involved in these mechanisms are AT, protein C and protein S, all of which are produced in the liver. Inherited or acquired abnormalities of these inhibitors of coagulation may lead to a prothrombotic state (thrombophilia).

The natural anticoagulants.

The antiphospholipid syndrome

The antiphospholipid antibody syndrome is defined by the presence of antiphospholipid antibodies (either anticardiolipin antibodies, antibeta-2 glycoprotein I antibodies or lupus anticoagulant) associated with thrombosis or certain problems in pregnancy. Lupus anticoagulant prolongs the results of coagulation tests that depend on phospholipid (e.g. the APTT).

cont'd...

 \succ Features of the antiphospholipid syndrome may include recurrent venous thromboses, recurrent arterial thrombosis (most commonly stroke) and recurrent miscarriage (due to placental thrombosis and infarction). Thrombocytopenia is common. Antiphospholipid antibodies are found in some patients with SLE or other autoimmune disorders as well as in individuals with no other evidence of an immunological abnormality.

LABORATORY ASPECTS OF HEMATOLOGY COAGULATION.

TEST CARRIED OUT ARE:

 PROTHROMBIN TIME (PT)
 ACTIVATED PARTIAL THROMBOPLASTIN TIME (APTT)
 PLASMA FIBRINOGEN
 CAOGULATION FACTOR ASSAYS
 PLASMA FIBRIN / FIBRINOGEN DEGRADATION PRODUCTS(FDP'S) AND D.DIMERS.

METHODS USED ARE: 1- AUTOMATIC 2-MANUAL

LABORATORY TEST USED IN DIAGNOSIS OF COAGULATION DISORDERS

A. SCREENING TESTS NORMAL PROTHROMBIN TIME (PT) 10-14 SEC. TEST EXTRINSIC & COMMON PATHWAYS ACTIVATED PARTIAL THROMBOPLASTIN TIME 30-40SEC. (APTT&PTTK) TESTS INTRINSIC&COMMON PATH WAYS THROMBIN TIME (TT) 10-12SEC. TESTS FIBRINOGEN- FIBRIN CONVERSION

B. SPECIFIC FACTORS ASSAYS C. TESTS OF FIBRINOLSIS EUGLOBULIN CLOTIYSIS TIME FIBRIN DEGRADATION PRODUCTS(FDPS)

Haemostasis tests: typical results in acquired bleeding disorders

	Platelet count	Prothrombin time	Activated partial thromboplastin time	Thrombin time
Liver disease	Low	Prolonged	Prolonged	Normal (rarely prolonged)
Disseminated intravascular coagulation	Low	Prolonged	Prolonged	Grossly prolonged
Massive transfusion	Low	Prolonged	Prolonged	Normal
Oral anticoagulants	Normal	Grossly prolonged	Prolonged	Normal
Heparin	Normal (rarely low)	Mildly prolonged	Prolonged	Prolonged
Circulating anticoagulant	Normal	Normal or prolonged	Prolonged	

Screening Tests of Hemostasis

Screening tests	Defects
B.T. Prolonged	Platelets () or dysfunction) + Von Willebrand's disease
APTT prolonged	Factors: XII, XI, VIII, IX, X, V, II, I
P.T. Prolonged	Factors: VII, X, V, II, I
T.T. Prolonged	Fibrinogen (Factor I) high FDPS
Reptilase time prolonged	Fibrinogen (factor I) high FDPS. Not effected by Heparin therapy
FDPS high	• D.I.C.
	Snake Bite
	 Thrombolytic therapy
	 Dysfibrinogenemia
Platelet Count Low	Thrombocytopenia
Platelet Count Normal	Platelet dysfunction

Indications for the use of fresh frozen plasma

- Coagulation factor deficiency (where specific or combined factor concentrate is not available)
- Reversal of warfarin effect.
- Multiple coagulation defects, e.g. in patients with liver disease, DIC
- Massive blood transfusion with coagulopathy and clinical bleeding
- Thrombotic thrombocytopenic purpura
- Deficiencies of antithrombin, protein C or protein S
- Some patients with immunedeficiency syndromes

Oral Anticoagulants Indications

- Venous thrombosis and pulmonary embolism.
- Atrial fibrillation.
- Heart valve prostheses.
- Myocardial infarction (Selected cases)

Antithrombotic Therapy

- 2- Oral anticoagulants
- * Antiplatelet drugs
- * Warfarin
- * New oral anticoagulant (Ximelagatran)

Oral Anticoagulants (Warfarin)

Doses and Preparations Available

Warfarin Preparations Tablets 1 mg (Pink), 2 mg (Gray-Blue) 5 mg (Orange). 7.5 mg (Yellow) 10 mg (white)

- ✓ Dosage: Large loading doses are no longer recommended. Depending on clinical circumstances, start with a daily dose of about 5 mg for 3 days. Check LFTs before starting treatment and do INR daily (the APTT as well) if the patient is receiving heparin, aiming to get the INR in the range between 2.0-4.5.
- ✓ The usual daily dose for most patients lies between 3 mg and 6 mg but maintenance doses may vary widely and regular control, by means of an INR performed at no longer than 8 weekly intervals, is mandatory.

WARFARIN TAB. 1 mgWARFARIN TAB. 2 mg WARFARIN TAB. 2.5 mg WARFARIN TAB. 5 mg WARFARIN TAB. 7.5 mg WARFARIN TAB. 10 mg

A lower dose of Warfarin may be required in any of the following:

- a. Elderly
- b. Poor nutrition
- c. Liver disease
- d. Potentiating drugs (especially antibiotics)
- e. Heart failure
- f. Following surgery

Oral Anticoagulants (Warfarin)

- **INR : International Normalized Ratio**
 - SI : International Sensitivity Index
 - for the thromboplastin reagent used.

Oral anticoagulant control tests. Target INR levels.

Target INR Clinical State

- 2.5 Treatment of DVT, pulmonary embolism, atrial
 (2.0 3.0) fibrillation, recurrent DVT of warfarin; symptomatic inherited thrombophilia, cardiomyopathy, mural thrombus, cardioversion
- 3.5 Recurrent DVT while on warfarin, mechanical
 (3.0 4.0) prosthetic heart valves, antiphospholipid syndrome (some cases)

Recommendations on the management of bleeding and excessive anticoagulation.

INR 3.0 – 6.0 (target INR 2.5) INR 4.0 – 6.0 (target INR 3.5) Reduce warfarin dose or stop Stop Warfarin, Restart warfarin when INR < 5.0

INR 6.0 – 8.0 No bleeding or minor bleeding

INR>8.0 No bleeding or minor bleeding

Major bleeding

Stop warfarin, Restart when INR <5.0

Stop warfarin Restart warfarin when INR<5.0 If other risk factors for bleeding give 0.5 – 2.5 mg of vitamin K orally

Stop warfarin - Give prothrombin complex concentrate 50 units/kg or FFP 15 ml/kg Give 5 mg vitamin K (oral or i.v.)

Drugs and other factors which interfere with the control of anticoagulant therapy

Potentiation of oral anticoagulants

Inhibition of oral anticoagulants

Drugs which increased the effect of coumarins
Reduced coumarin binding to serum albumin
sulphonamides
Inhibition of hepatic microsomal degradation of coumar
cimetidine
allopurinol
Tricyclic antidepressants
metronidazole
Sulphonamides
Alteration of hepatic receptor site for drug
thyroxine
quinidine
Decreased synthesis of vitamin K factors
high doses of salicylates
some cephalosporins
Liver disease
Decreased synthesis of vitamin K factors
Decreased absoorption of vitamin K
e.g. malabsorption, anitibiotic therapy, laxatives

Drugs which depress the action of coumarins Acceleration of hepatic microsomal degradation of coumarin barbiturates in rifampicin Enhanced synthesis of clotting factors Oral contraceptives

Hereditary resistance to oral anticoagulants

Pregnancy

لماذا عليك الانتياه لغذائك؟ لأن الكثير من الطعام الذي تتناوله يحتوى على فيتامين ك و فيتامين ك يساعد على تخثر الدم.

لماذا يجب أن تبقى على غذاء متوازن كل يوم ؟

لأن التغيير في الكمية المأخوذة من فيتامين ك قد تؤثر على مفعول الكوميدين ، من المهم أن تحافظ على غذائك مستقرا حتى تكون كمية فيتامين ك مستقره ، لا تغير كثيرا في غذائك قبل أن تخبر الطبيب أو الصيدكي المسؤل عن علاجك ،حتى لا يؤثر على عمل الكوميدين

هل يجب أن تتجنب الطعام المحتوى على الكثير من في<mark>تا</mark>مين ك ٢ لا .. فقط حافظ على غذاؤك مستقرا . بعض الأغذية المهمة للتغذية الصحية تحتوى على نسبة عالية من فيتامين ك مثل الخضروات الورقية (الجرجير ، الكراث ، الشبت ، وغيرها)

و بعض الحبوب البقول وكذلك البصل.

هل الطبخ ، التجميد ، أو التجفيف بغير من محتوى فيتامين ك في الغذاء ٢ هناك معلومات بسيطة عن تأثير الطرح التحديد ال التحمد على الطعام ولكن يبدو أن فيعامين ف لا يتغير بالطعام المجمد ، المطبوخ ، أو المجفف عن الطازج .

كم يحتوي الطعام من فيتامين ك ؟ فى الجهة المقابلة من النشرة ستجد جدولا للأطعمة المختلفة التى تحتوي على فيتامين ك ، المحتوى من فيتامين ك قيس على نفس الكمية من كل نوع من الأطعمة .

Coumadin (WARFARIN) **Your Diet and** Vitamin K

Why do you need to Pay attention to your diet? Because many kinds of food you eat have vitamin k in them, and Vitamin K helps your blood make clots.

Why should you stay on the same general diet every day?

Because major changes in the amount of Vitamin K you eat may affect the way your Coumadin (Warfarin) works. It is important for you to keep your diet steady. Don't make major changes in your diet before telling your healthcare provider, since your condition is affected.

Should you avoid foods with high amount of Vitamin K?

No. Just keep your diet steady. Some foods that are important to a healthy diet are high in Vitamin K, like leafy great Vegetables, some beans, peas, and onion.

Does cooking, freezing, or drying food change the Vitamin K content?

There is little information about the effects of cooking, freezing, or drying on Vitamin K content in foods. It appears that the Vitamin K content of cooked, frozen, or dried food is about the same as fresh food.

How much Vitamin K does our food contain?

On the of the sheet you find a table listing the contents of Vitamin K for different kinds of food. The content estimation was made based on testing the same amount of each kind of food.

Remember that it is important to keep your diet steady!!

	FOOD	PORTION	RANK of VITAMIN K CONTENT	10.000 10.000 10.000	محتوى فيتامين ك	الكمية	اء	الغذ
	Apple	1 apple	LOW	1	منخفض	حبة تفاح	تفاح	1 2.51
FRUITS	Banana	1 banana	LOW		منخفض	حبة موز	موز	
	Orange	1 orange	LOW		منخفض	حبة برتقال	ىر تقال	-
1 million	Pears (canned) 1 cup	LOW	1	متخفض	حبة أجاص	أجاص	1
And the second second	Strawberries	1/2 cup	LOW		متخفض	۱/۲ کوب	قراولة	
FATS	Oil	1 tablespoon	LOW		منخقص	plais dials	زيت ا	هون ا
PAIS	Mayonnaise	7 tablespoon	MEDIUM		متوسط	مادعق طعام	مايونييز ٧	a concerne
EGGS	Egg	1 whole egg	LOW	11000	منخفض	۱ بیضة	بيض	بيض
	Beef Liver	120 Gm	HIGH	0000	عالي	. ۱۲ جرام	كبدة البقر	لحوج
	Chicken (breast	0. 100 Gm	LOW		منخفض	rls= 1	دجاج	و ا
MEAT AND	Chicken Liver	100 Gm	MEDIUM		متوسط	۰۰۰ جرام	كبدة الدجاج	cen
PRODUCTS	Ground Beef	120 Gm	LOW	1000	منخفض	. ۲۱ جرام	لحم مقروم	oulos.
	BUTTER	1 tablespoon	LOW		متوسط	اجرام	حينة تشيدر	حليب
MILK AND MILK	CHEESE (cheddar)	100 gm	MEDIUM	the second second	متخفض	ملعقة طعام	زيدة ا	تتجات
i RODOCIS	MILK	1 cup	LOW		منخفض	ا کوپ	حليب	
CEREAL	OATS	1/2 cup	MEDIUM		منخقض	۱ شريحة	خبز أبيض	لوب و
AND	RICE	1/2 cup	LOW	Local	متخفض	٢/١ كوب	ci	المعاقما ا
PRODUCTS	BREAD	1 slice	LOW	1000	متوسط	1/٢كوب	قمح	1 m m
DEVED 4 CES	COFFEE	1 cup	MEDIUM	1000	متوسط	ا کوب	القهوة	د و بات
BEVERAGES	TEA(grean)	1 cup	HIGH		عالي	۱ کوب	الشاي الأخضير	
These and the second	ASPARAGUS	1/2 cup	MEDIUM		متوسط	1/1 كوب	هليون	-10-10
VEGETABLES	BROCCOLI	1/2 cup	HIGH		عالي	- 5×1/1	قر نبيط أخضر	
	CABBAGE	1/2 cup	MEDIUM		متوسط			lei everne
	CHICK PEAS	1/2 cup	HIGH		عالى	11055/1		
	CORN	1/2 cup	LOW		منخفض	- J - J - J - J - J - J - J - J - J - J		re e total
and the second second	GREEN BEANS	1/2 cup	LOW		ا منخفض	571	دره	and the second second
	KALE	1/2 cup	HIGH			ا ۱ موب	فاصوليا	
	LETTUCE	1/2 cup	MEDIUM	-		١/١ حوب	کیل	
-	MOLOKIA	1/2 cup	MEDIUM	-	منوسط	١/١ حوب	خس	
	POTATO	1/2 cup	LOW	-	مىحقصر	١/١ كوب	بطاطس	
	PUMPKIN	1/2 cup	LOW		منخفض	١١/٦ كوب	قرع	
	PARSLEY	1/2 cup	MEDIUM		متوسط	1/1 کوب	سبانخ	
	SPINACH	1/2 cup	MEDIUM	-	si aición	حبة متوسط	طماطم	
ſ	TOMATO	1 medium	LOW		متوسط	- 5T/1	a is a la	

Fibrinolytic agents – plasminogen activators

- Streptokinase (SK)
- Tissue plasminogen activator (tPA)
- Single chain urokinase-type plasminogen activator (SCU PA)
- Acylated plasminogen streptokinase activator complex (APSAC)

Contraindications to thrombolytic therapy

Absolute contraindications	Relative contraindications
Active gastrointestinal bleeding	Traumatic cardiopulmonary
Aortic dissection	resuscitation
Head injury or cerebrovascular	Major surgery in the past 10 days
accident in the past 2 months	Past history of gastrointestinal
Neurosurgery in the past	bleeding
2 months	Recent obstetric delivery
Intracranial aneurysm or	Prior arterial puncture
neoplasm	Prior organ biopsy
Proliferative diabetic	Serious trauma
retinopathy	Severe arterial hypertension
	(systolic pressure >200 mmHg, diastolic
	pressure >110 mmHg)

Bleeding diathesis

