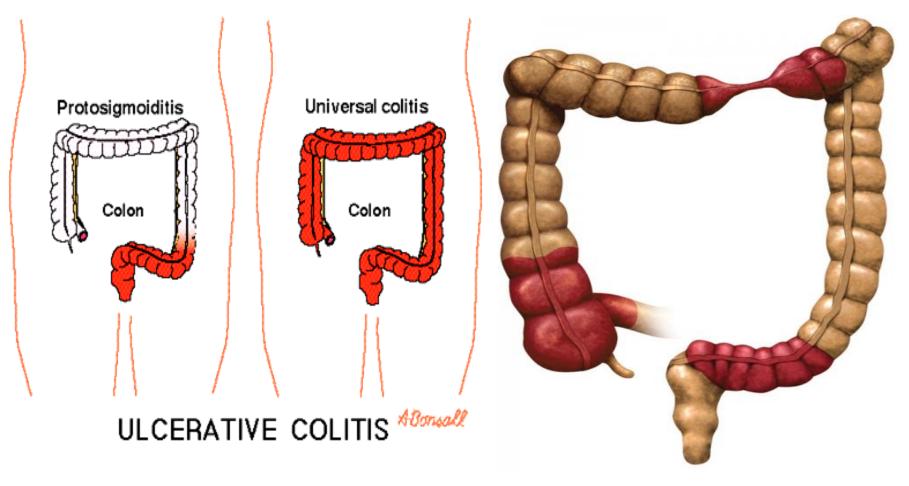
Drugs and biological and immune therapy in inflammatory bowel disease (IBD)

Prof. Hanan Hagar
Pharmacology Unit
College of Medicine

Inflammatory Bowel Diseases (IBD)

• is a group of <u>inflammatory</u> conditions of the <u>small intestine</u> and <u>colon</u>.


• The major types of **IBD** are <u>Crohn's disease</u> and <u>ulcerative colitis</u> (UC).

Causes

- Not known.
- auto-immune disorder due to abnormal activation of the immune system.
- The susceptibility is genetically inherited.

Differences between Crohn's disease and UC

	Crohn's disease	Ulcerative colitis
Location	affect any part of the GIT, from mouth to anus	Restricted to colon & rectum
Distribution	Patchy areas of inflammation (Skip lesions)	Continuous area of inflammation
Depth of inflammation	May be transmural, deep into tissues	Shallow, mucosal
Complications	Strictures, Obstruction Abscess, Fistula	Toxic megacolon Colon cancer

Ulcerative colitis

Crohn's disease

Symptoms

- Abdominal pain
- Vomiting
- Diarrhea
- Rectal bleeding.
- Weight loss

Complications

- Anemia
- Abdominal obstruction (Crohn's disease)
- Mega colon
- Colon cancer

Treatment of IBD

There are two goals of therapy

- 1. Achievement of remission (Induction).
- 2. Prevention of disease flares (maintenance).

Treatment of IBD

Stepwise therapy:

- 1. 5-amino salicylic acid compounds (5-ASA) or aminosalicylates.
- 2. Glucocorticoids
- 3. Immunomodulators
- 4. Biological therapy (TNF-α inhibitors).
- 5. Surgery in severe condition.

5-amino salicylic acid compounds (5-ASA) Aminosalicylates

Mechanism of action

Have topical anti-inflammatory action due to:

- inhibition of prostaglandins and leukotrienes.
- decrease neutrophil chemotaxis.
- Antioxidant activity (scavenging free radical production).

Aminosalicylates (5-ASA)

- 5-ASA itself is absorbed from the proximal small intestine.
- Different formulations are used to overcome rapid absorption of 5-ASA from the proximal small intestine.
- All aminosalicylates are used for induction and maintenance of remission

Aminosalicylates

Different formulations of aminosalicylates are:

- > Azo compounds
 - Sulfasalazine
 - Balsalazide
 - Olsalazine
- Mesalamines
 - Asacol
 - Pentasa
 - Canasa
 - Rowasa

The major differences are in mechanism and site of delivery.

Azo compounds

These compounds contain (5-ASA) that is connected by azo bond (N=N):

- **✓** to sulfapyridine moiety (Sulfasalazine)
- **✓** to another molecule of 5-ASA (Olsalazine)
- ✓ to inert compound (Balsalazide).

Sulfasalazine:5-ASA + sulphapyridine

Olsalazine: 5-ASA + 5-ASA

Balsalazide: 5-ASA + inert carrier

Azo compounds

 Azo structure reduces absorption of 5-ASA in small intestine.

• In the terminal ileum and colon, azo bond is cleaved by azoreductase enzyme produced by bacterial flora releasing 5-ASA in the terminal ileum and colon.

Sulfasalazine (**Azulfidine**)

- Pro-drug
- A combination of 5-ASA + sulfapyridine
- Is given orally (enteric coated tablets).
- Little amount is absorbed (10%)
- In the terminal ileum and colon, sulfasalazine is broken by azoreductase into:
- 5-ASA (not absorbed, active moiety acting locally).
- Sulphapyridine (absorbed, causes most of side effects).

Mechanism of action of sulfasalazine

- 5-ASA has anti-inflammatory action due to:
- inhibition of prostaglandins and leukotrienes.
- decrease neutrophil chemotaxis.
- Antioxidant activity (scavenging free radical production).

Side effects of sulfasalazine

- Crystalluria.
- Bone marrow depression
- Megaloblastic anemia.
- Folic acid deficiency (should be provided).
- Impairment of male fertility (Oligospermia).
- Interstitial nephritis due to 5-ASA.

Mesalamine compounds

Formulations that have been designed to deliver 5-ASA in terminal small bowel & large colon.

Mesalamine formulations are

- Sulfa free
- well tolerated
- have less side effects compared to sulfasalazine
- useful in patient sensitive to sulfa drugs.

Mesalamine compounds

Oral formulations

- which releases 5-ASA in the distal small bowel secondary to pH changes.
- Releases start at the pylorus and continues throughout the small bowel and colon.
- **Asacol:** 5-ASA coated in pH-sensitive resin that dissolve at pH 7.
- Pentasa: micro granules that release 5-ASA throughout the small intestine.

Mesalamine rectal formulations

release 5-ASA in the distal colon.

Canasa (suppositories)

Rowasa (enema)

Clinical uses of 5-amino salicylic acid compounds

- Induction and maintenance of remission in mild to moderate IBD (First line of treatment).
- Rheumatoid arthritis (Sulfasalazine only).
- Rectal formulations are used in distal ulcerative colitis, ulcerative proctitis and proctosigmoiditis.

Glucocorticoids

- I) Oral preparation: e.g. prednisone, prednisolone
- II) Parenteral preparation: e.g. hydrocortisone, methyl prednisolone
 - Higher rate of absorption
 - More adverse effects compared to rectal administration

III) Rectal preparation e.g. Hydrocortisone

- As enema or suppository, give topical effect.
- Less absorption rate than oral.
- Minimal side effects & maximum tissue effects

Budesonide:

- A potent synthetic prednisolone analog
- Given orally (controlled release tablets) so release drug in ileum and colon.
- Low oral bioavailability (10%).
- Is subject to extensive first pass metabolism
- Used in treatment of active mild to moderate Crohn's disease involving ileum and proximal colon.

Mechanism of action of glucocorticoids

- Inhibits phospholipase A2
- Inhibits gene transcription of NO synthase, cyclo-oxygenase-2 (COX-2)
- Inhibit production of inflammatory cytokines

Uses of glucocorticoids

- Indicated for acute flares of disease (moderate
 to- severe active IBD).
- Are not useful in maintaining remission (not effective as prophylactic therapy).
- Oral glucocorticoids is commonly used in active condition.
- Rectal glucocorticoids are preferred in IBD involving rectum or sigmoid colon.

Uses of glucocorticoids

- Asthma
- Rheumatoid arthritis
- immunosuppressive drug for organ transplants
- Antiemetic during cancer chemotherapy

Immunomodulators

Are used to induce remission in IBD in active moderate-to-severe conditions or steroid dependent or steroid resistant (refractory) Patients and to maintain remission.

Immunomodulators include:

- Methotrexate
- Purine analogs:

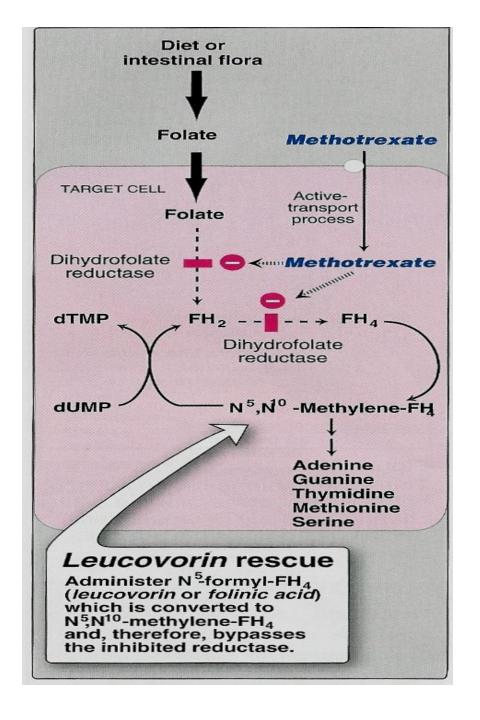
(azathioprine & 6-mercaptopurine).

Purine analogues (azathioprine & 6-mercaptopurine)

Azathioprine is pro-drug of 6-mercaptopurine

- Inhibit purine synthesis and inhibits synthesis of DNA, RNA, and proteins.
- It may decrease proliferation of immune cells, which lowers autoimmune activity.
- Induction and maintenance of remission in IBD

Adverse effects:


- Bone marrow depression: leucopenia, thrombocytopenia.
- Gastrointestinal toxicity.
- Hepatic dysfunction.
- Complete blood count & liver function tests are required in all patients

Methotrexate

- a folic acid antagonist
- Inhibits dihydrofolate reductase required for folic acid activation (tetrahydrofolate)
- Impairs DNA synthesis
- Orally, S.C., I.M.
- Used to induce and maintain remission.

Uses

- Inflammatory bowel disease
- Rheumatoid arthritis
- Cancer

Adverse effects of methotrexate

- Megaloblastic anemia
- Bone marrow depression

Monoclonal antibodies used in IBD (TNF-α inhibitors)

- Infliximab
- Adalimumab
- Certolizumab

Infliximab

- a chimeric mouse-human monoclonal antibody
- 25% murine 75% human.
- TNF-α inhibitors
- Inhibits soluble or membrane –bound TNF-α located on activated T lymphocytes.
- Given intravenously as infusion (5-10 mg/kg).
- has long half life (8-10 days)
- 2 weeks to give clinical response.

Uses of infliximab

- In moderate to severe active Crohn's disease and ulcerative colitis.
- Patients not responding to immunomodulators or glucocorticoids.
- Treatment of rheumatoid arthritis
- Psoriasis

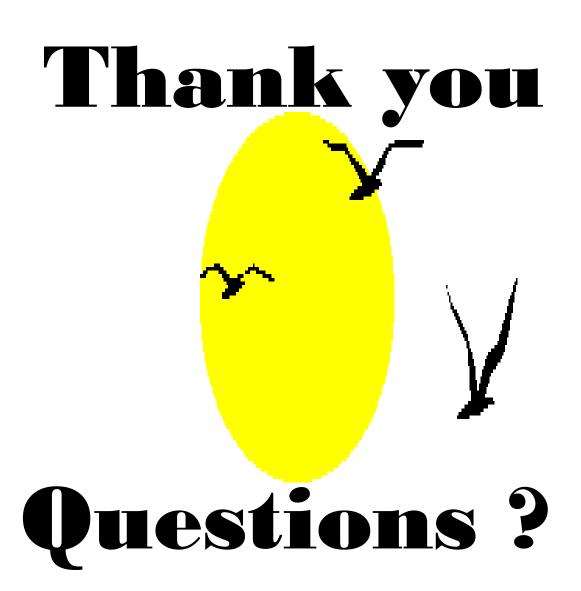
Side effects

- Acute or early adverse infusion reactions (Allergic reactions or anaphylaxis in 10% of patients).
- Delayed infusion reaction (serum sicknesslike reaction, in 5% of patients).
- Pretreatment with diphenhydramine, acetaminophen, corticosteroids is recommended.

Side effects (Cont.)

- Infection complication (Latent tuberculosis, sepsis, hepatitis B).
- Loss of response to infliximab over time due to the development of antibodies to infliximab.
- Severe hepatic failure.
- Rare risk of lymphoma.

Adalimumab (HUMIRA)


- Fully humanized IgG antibody to TNF-α
- Adalimumab is TNFα inhibitor
- It binds to TNFa, preventing it from activating TNF receptors.
- Has an advantage that it is given by subcutaneous injection
- is approved for treatment of, moderate to severe Crohn's disease, rheumatoid arthritis, psoriasis.

Certolizumab pegol (Cimzia)

- Fab fragment of a humanized antibody directed against TNF-α
- Certolizumab is attached to <u>polyethylene</u>
 <u>glycol</u> to increase its <u>half-life</u> in circulation.
- Given subcutaneously for the treatment of <u>Crohn's disease</u> & <u>rheumatoid arthritis</u>

Summary for drugs used in IBD

- 5-aminosalicylic acid compounds
 - Azo compounds:
 - sulfasalazine, olsalazine, balsalazide
 - Mesalamines:
 - Pentasa, Asacol, Rowasa, Canasa
- Glucocorticoids
- prednisone, prednisolone, hydrocortisone, budesonide
- Immunomodulators
 - Methotrexate
 - Purine analogues: Azathioprine&6mercaptopurine
- TNF-alpha inhibitors (monoclonal antibodies)
 - Infliximab Adalimumab Cetrolizumab

