APPROACH TO HAEMOLYSIS AND HAEMOGLOBINOPATHIES By:

DR. SHIHAB AL-MASHHADANI Consultant Haematologist Head of Haematology Division Associate Professor Department of Pathology College of Medicine King Saud University

LEARNING OBJECTIVES

- ➤ To be able to define haemolysis and haemolytic anaemia
- ➤ To be able to classify haemolytic anaemias into congenital and acquired types, and to know the aetiological factors in each division
- To understand the difference between intravascular and extra-vascular haemolysis, and to recognise the laboratory features of each

cont'd...

- To appreciate that disorders of globin function such as sickle cell disease are subtypes of haemolytic anaemia
- ➤ To understand the role of autoantibodies in the production of haemolytic anaemias and to know the types of disease with which they are associated
- To understand some causes of non-immune acquired haemolytic anaemias

HAEMOLYSIS

- Premature destruction of RBCs.
- Hemolysis could be due to:
 - a. Defect in the RBCs (intra-corpuscular) as

in congenital hemolytic Anaemia.

 b. Defect in the surrounding environment (extracorpuscular) as in acquired

Anaemia.

Classification Of Haemolytic Anaemias

Hereditary

Haemoglobin Abnormal (Hb S, Hb C, unstable) Thalassaemia Membranopathy Enzymopathy

Acquired

Allografts, especially marrow transplantation drug associated **Red cell fragmentation syndrome** Arterial grafts, cardiac valves Microangiopathic Thrombotic thrombocytopenic purpura Haemolytic uraemic syndrome Meningococcal sepsis **Pre-eclampsia** Disseminated intravascular coagulation March haemoglobinuria Infections Malaria, clostridia **Chemical and physical agents** Especially drugs, inductrial/domestic substances, burns Secondary Liver and renal disease Paroxysmal nocturnal haemoglobinuria

A classification of haemolytic anaemia by aetiology. Abbreviations: G6PD, glucose-6-phosphate dehydrogenase; MAHA, microangiopathic haemolytic anaemia.

HAEMOLYTIC ANAEMIAS

Haemolysis

- describes the shortening of the lifespan of a mature red blood cell.
- increased red cell output from the marrow
- stimulated by erythropoietin
- will be sufficient to compensate for the increased red cell destruction
- more marked reductions in red cell lifespan say to 5-10 days from the usual 120 days
- will result in *haemolytic anaemia*
- this compensatory increase in erythroid output requires an adequately functioning bone marrow and effective erythropoiesis
- a suboptimal marrow response is seen
- haemolysis will result in anaemia more readily

Clinical Features of Hemolysis

- Pallor, lethargy
- Jaundice
- Splenomegaly
- Gall stones (Pigment bilirubin)
- Dark urine (urobilinogen)
- Bone deformity (In some types of haemolytic anaemia)
- Leg ulcers (in some types of haemolytic anaemia).

Laboratory Features of Hemolysis

1.) Features of increased red cell breakdown.

- **b. ^ urine urobilinogen.**
- d. Absent serum haptoglobins.

Laboratory Features of Hemolysis

2.) Features of increased red cells production.

- a. Reticulocytosis
- b. Bone marrow erythroid hyperplasia.
- 3.) Damaged red cells.
 - a. Morphology (e.g. microspherocytes, elliptocytes, red cells fragmentation).
 - b. Increased osmotic fragility, autohaemolysis etc).
 - c. Shortened red cell survival (This can be shown by ⁵¹Cr labeling with study of the sites of destruction.

Intravascular and extravascular haemolysis

- a. Intravascular haemolysis, the process of breakdown of red cells directly in the circulation.
- b. Extravascular haemolysis excessive removal of red cells by cells of RE system in the spleen and liver.

The main laboratory features of intravascular haemolysis are as follows:

- 1. Haemoglobinaemia and haemoglobinuria.
- 2. Haemosiderinuria (Iron storage protein in the spun deposit of urine).

Causes of intravascular haemolysis

- Mismatched blood transfusion (usually ABO)
- G6PD deficiency with oxidant stress
- Red cell fragmentation syndromes
- Some autoimmune haemolytic anaemias
- Some drug-and infection-induced haemolytic anaemias
- Paroxysmal nocturnal haemoglobinuria
- March haemoglobinuria
- Unstable haemoglobin

HAEMOLYTIC ANAEMIA

A. CONGENITAL **SICKLE CELL DISEASE & OTHER HAEMOGLOBIN DISORDERS** THALASSAEMIAS **ENZYMOPATHIES MEMBRANOPATHIES B. AQUIRED**

SICKLE CELLANAEMIA

THALASSAEMIA MAJOR

SICKLE BETA-THALASSAEMIA

Schematic diagram of the red cell membrane cytoskeleton.

SPHEROCYTOSIS

SPHEROCYTOSIS NEW BORN

STOMATOCYTOSIS

ACANTHOCYTOSIS

Abnormal Haemoglobins (Haemoglobinopathies)

	1 VAL-	2 - HTS-	3 - L.EU-	4 - THR-	5 - PRO-	6 GLU-	7 GLU-	8 1.YS-	9 SER-	10 ALA-	11 VAL-	12 THR-	13	· 14	15 TRY	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
	GLY-	-LYS-	-VAL-	ASN	-VAL-	ASP-	-GLU-	VAL-	GLY-	GLY-	GLU-	ALA-	LEU-	GLY-	ARG	
	31 LEU-	32 - LEU-	-33	34 - VAL-	35 - TYR-	.36 PRO-	37 - TRY-		39 GLN-	40 ARG-	41 PHE-	42 - PHE-	43 GLU-	44 SER-	45 PHE	
	46	47	48	49	50	51	52	53	5.4	5.5	56	57	58	59	60	
	GLY-	-ASP-	-LEU-	SER-	-THR-	PRO	-ASP-	-ALA-	-VAL-	MET-	GLY-	-ASN-	PRO-	LYS	VAL	
	61 LYS-	62 ALA	63 HIS-	6.4 GLY	65 -LYS-	66 LYS-	67 -VAL-	68 -LEU-	69 -GLY-	70 ALA-	71 PHE-	.72 SER-	73 ASP	74 -GLY-	75 LÉU	
	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	
	ALA-	-HIS-	-LEU-	ASP	-ASN-	LEU	-LYS-	-GLY-	THR-	PHE-	ALA	THR-	-LEU-	-SER-	-GLU	
	91 LEU-	92 -HIS-	93 -CYS-	94 -ASP-	95 -LYS-	96 LEU	97 -HIS-	98 VAL	99 -ASP-	100 -PRO-	101 -GLU-	102 -ASN-	103 PHE	104 ARG	105 -LEU	
	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	
2	LEU-	-GLY-	-ASN-	-VAL-	-LEU-	VAL	-CYS-	-VAL-	-LEU-	ALA-	HIS-	HIS-	-PHE-	-GLY-	-LYS	
	121 GKU-	122 - PHE-	123 - THR-	124	125 - PRO-	126 VAL	127 -GLN-	128 ALA	129	130 -TYR-	131 GLN-	132 -LYS-	133 -VAL	134 -VAL-	135 ALA	
	136	137	138	139	140	141	142	143	144	145	146			. (
	GLY-	-VAL-	-ALA-	-ASN-	-ALA-	LEU-	-ALA-	-HIS-	-LYS-	-TYR-	HIS	1.		1.1		

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
VAL	-LEU	-SER	-PRO-	-ALA-	-ASP	-LYS-	-THR-	-ASN-	-VAL-	-LYS-	-ALA-	-ALA-	TRY-	-GLY
16	17	18	19	20	21	22	23	24	25	26	.27	28	29	30
LYS	-VAL-	-GLY	-ALA-	-HIS	-ALA-	-GLY	-GLU-	TYR-	-GLY-	-ALA-	-GLU-	-ALA-	-LEU-	-GL U
	20		24	25	- 20	27	20	20	10	41	12	13	4.4	45
ARG	32 -MET-	- PHE-	- LEU-	-SER	-PHE-	-PRO	-THR-	-THR-	-LYS-	-THR-	-TYR-	-PHE-	-PRO-	HIS
11110			110	0.511								-		
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
PHE	-ASP-	-LEU	-SER-	-HIS-	-GLY-	-SER-	-ALA-	-GEN-	-VAL-	-LYS-	-GLY-	-H15-	-GLY-	- 112
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
LYS	-VAL-	-ALA-	-ASP-	ALA	-LEU	THR	-ASN-	-ALA-	-VAL-	-ALA-	-HIS-	-VAL-	-ASP-	-ASP
76	77	78	79'	80	81	82	83	84	85	86	87	88	89	90
MET	-PRO-	-ASN-	-ALA-	-LEU-	-SER-	-ALA	-LEU-	-SER-	-ASP	-LEU-	-HIS-	-ALA-	-HIS-	-LYS
						0.7	~ ~		100	101	100	102	104	105
91 LEU-	92 - ARC-	93 -VAL-	- ASP-	-PRO-	96 -VAL.	-ASN	- PHE-	-1.VS-	-LEU	- L.EU-	-SER-	-HTS-	-CVS-	-LEU
ШЦО	ANG	VAL	ADI	INO	VAL	ADI	LILL	110	LEC	TEC	OBR	1110	Cito	DEC
106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
LEU	-VAL	-THR-	-LEU-	-ALA	-ALA	-HIS	-LEU-	-PRO-	-ALA	-GLU-	-PHE-	-THR-	-PRO-	-ALA
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
VAL	-HIS-	-ALA	SER	-LEU	-ASP	-LYS	PHE	-LEU-	-ALA	-SER-	-VAL	-SER-	THR	-VAL
136	137	138	1.30	140	141			· de						
LEU	-THR-	-SER	-LYS-	TYR	-ARG								-	

ţ,

Some Known Haemoglobin Mutants

NAME	SUBSTITUTION
Hb. S	$\alpha 2 \beta 2 6 \text{ GLU} \rightarrow \text{VAL}$
Hb. C	$\alpha 2 \beta 2 6 \text{ GLU} \rightarrow \text{LYS}$
Hb. E	$\alpha 2 \beta 2$ 26 GLU \rightarrow LYS
Hb. O ARAB	$\alpha 2 \beta 2$ 121 GLU \rightarrow LYS
Hb. D PUNJAB	$\alpha 2 \beta 2$ 121 GLU \rightarrow GLN
Hb RIYADH	$\alpha 2 \beta 2$ 120 LYS \rightarrow ASN
Hb. HAMMERSMITH	$\alpha 2 \beta 2$ 42 PHE \rightarrow SER
Hb. N. BALTIMORE	$\alpha 2 \beta 2 95 LYS \rightarrow GLU$
Hb. KORLE-BU	$\alpha 2 \beta 2 73 \text{ ASP} \rightarrow \text{ASN}$
Hb. K. WOOLWICH	$\alpha 2 \beta 2$ 132 LYS \rightarrow GLN
Hb. K. IBADAN	$\alpha 2 \beta 2 46 \text{ GLY} \rightarrow \text{GLU}$
Hb. KÖ LN	$\alpha 2 \beta 2 98 \text{ VAL} \rightarrow \text{MET}$
Hb. J. BALTIMORE	$\alpha 2 \beta 2 16 \text{ GLY} \rightarrow \text{ASP}$

Some Known Haemoglobin Mutants

NAME	SUBSTITUTION
Hb. G. PHILADELPHIA	$\alpha 2 68 \text{ ASN} \rightarrow \text{LYS} \beta 2$
Hb. ZAMBIA	$\alpha 2 60 \text{ LYS} \rightarrow \text{ASN} \beta 2$
Hb. G. CHINESE	$\alpha 2$ 30 GLU \rightarrow GLN $\beta 2$
Hb. HASHARON	$\alpha 2 47 \text{ ASP} \rightarrow \text{HIS} \beta 2$
Hb. J. TONGARIKI	$\alpha 2$ 115 ALA \rightarrow ASP $\beta 2$
Hb. J. OXFORD	$\alpha 2 15 \text{ GLY} \rightarrow \text{ASP} \beta 2$
Hb. NORFOLK	$\alpha 2 57 \text{ GLY} \rightarrow \text{ASP} \beta 2$

DNA Coding for the Amino-Acid in the sixth position in the β-chain

Normal

	5	6	7
Amino Acid	pro	glu	glu
DNA Base Composition	CCT	GAG	GAG
Sickle			
DNA Base composition	ССТ	GTG	GAG
Amino Acid	pro	val	glu
	5	6	7

+ + - - +-HbA...Val – His – Leu – Thr – Pro – Glu – Glu – Lys \ldots + + HbS ..., Val – His – Leu – Thr – Pro – <u>Val</u> – Glu – Lys \bigwedge ... HbC ..., Val – His – Leu – Thr – Pro – Lys Glu – Lys f ... Amino acid sequences of the peptides 4 in haemoglobins A, S and C.

HAEMOGLOBIN VARIANTS: GENE DISTRIBUTION

SICKLE CELL DISEASE By:

DR. SHIHAB AL-MASHHADANI Consultant Haematologist Head of Haematology Division Associate Professor Department of Pathology College of Medicine King Saud University

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
VAL	-LEU	-SER	-PRO-	-ALA-	-ASP	-LYS-	-THR-	-ASN-	-VAL-	-LYS-	-ALA-	-ALA-	TRY-	-GLY
16	17	18	19	20	21	22	23	24	25	26	.27	28	29	30
LYS	-VAL-	-GLY	-ALA-	-HIS	-ALA-	-GLY	-GLU-	TYR-	-GLY-	-ALA-	-GLU-	-ALA-	-LEU-	-GL U
	20		24	25	- 20	27	20	20	10	41	12	13	4.4	45
ARG	32 -MET-	- PHE-	- LEU-	-SER	-PHE-	-PRO	-THR-	-THR-	-LYS-	-THR-	-TYR-	-PHE-	-PRO-	HIS
11110			110	0.511								-		
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
PHE	-ASP-	-LEU	-SER-	-HIS-	-GLY-	-SER-	-ALA-	-GEN-	-VAL-	-LYS-	-GLY-	-H15-	-GLY-	- 112
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
LYS	-VAL-	-ALA-	-ASP-	ALA	-LEU	THR	-ASN-	-ALA-	-VAL-	-ALA-	-HIS-	-VAL-	-ASP-	-ASP
76	77	78	79'	80	81	82	83	84	85	86	87	88	89	90
MET	-PRO-	-ASN-	-ALA-	-LEU-	-SER-	-ALA	-LEU-	-SER-	-ASP	-LEU-	-HIS-	-ALA-	-HIS-	-LYS
						0.7	~ ~		100	101	100	102	104	105
91 LEU-	92 - ARC-	93 -VAL-	- ASP-	-PRO-	96 -VAL.	-ASN	- PHE-	-1.VS-	-LEU	-1.EU-	-SER-	-HTS-	-CVS-	-LEU
ШЦО	ANG	VAL	ADI	INO	VAL	ADI	LILL	110	LEC	TEC	OBR	1110	Cito	DEC
106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
LEU	-VAL	-THR-	-LEU-	-ALA	-ALA	-HIS	-LEU-	-PRO-	-ALA	-GLU-	-PHE-	-THR-	-PRO-	-ALA
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
VAL	-HIS-	-ALA	SER	-LEU	-ASP	-LYS	-PHE-	-LEU-	-ALA	-SER-	-VAL	-SER-	THR	-VAL
136	137	138	1.30	140	141			· de						
LEU	-THR-	-SER	-LYS-	TYR	-ARG								-	

ţ,

****	2	3	4	5	6	7	8	9	10	11	12	13	14	15
VAL-	HIS-	-LEU-	-THR-	-PRO-	-GLU	-GLU	-LYS-	-SER-	-ALA-	-VAL-	-THR-	-ALA-	-LEU-	-TRY
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
GLY-	LYS	-VAL-	-ASN	-VAL-	-ASP	-GLU	-VAL-	GLY	-GLY-	-GLU-	-ALA-	-LEU-	-GLY-	ARG
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
LEU-	LEU-	-VAL-	-VAL	TYR	-PRO	TRY	THR	GLN	ARG	PHE	-PHE-	-GLU-	-SER-	PHE
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
GLY-	ASP-	-LEU-	SER	THR	PRO	ASP	ALA	VAL-	MET	-GLY	-ASN-	-PRO-	-LYS-	-VAL
61	62	63	64	65	66	67	6.8	69	70	71	. 72	73	74	75
LYS-	ALA-	-HIS-	-GLY-	-LYS-	-LYS-	-VAL-	-LEU-	-GLY-	-ALA-	PHE	-SER-	-ASP-	-GLY-	LEU
76	77	70	70		01	02	0.2	0.1	05	06	07	0.0	00	.00
ALA-	HIS-	-LEU-	-ASP-	-ASN-	-LEU-	-LYS	-GLY-	THR	-PHE-	-ALA	-THR-	-LEU-	-SER-	-GLU
				1.111.511										
	1000													
91 LEU-	92 HTS-	93 CYS-	94	95 - L.V.S	96	97 -HTS	98 -VAL-	99	100 - PRO-	101 -GLU:	102	103 - PHE-	104	105
91 LEU-	92 HIS-	93 CYS-	94 ASP	95 -LYS-	96 -LEU	97 HIS	98 -VAL-	99 -ASP-	100 -PRO-	101 -GLU	102 -ASN	103 -PHÉ-	104 -ARG-	105 -LEU
91 LEU-	92 HIS-	93 -CYS- 108	94 -ASP- 109	95 -LYS- 110	96 -LEU 111	97 -HIS 112	98 -VAL- 113	99 -ASP- 114	100 -PRO- 115	101 -GLU- 116	102 -ASN- 117	103 -PHE- 118	104 -ARG- 119	105 -LEU 120
91 LEU- 106 LEU-	92 HIS- 107 GLY-	93 -CYS- 108 -ASN-	94 -ASP- 109 -VAL-	95 -LYS- 110 -LEU-	96 -LEU 111 -VAL	97 -HIS 112 -CYS-	98 -VAL- 113 -VAL-	99 -ASP- 114 -LEU-	100 -PRO- 115 -ALA-	101 -GLU- 116 -HIS-	102 -ASN- 117 -HIS-	103 -PHE- 118 -PHE-	104 -ARG- 119 -GLY-	105 -LEU 120 -LYS
91 LEU- 106 LEU- 121	92 HIS- 107 GLY- 122	93 -CYS- 108 -ASN- 123	94 -ASP- 109 -VAL- 124	95 -LYS 110 -LEU 125	96 -LEU 111 -VAL 126	97 -HIS 112 -CYS 127	98 -VAL 113 -VAL 128	99 -ASP- 114 -LEU- 129	100 -PRO- 115 -ALA- 130	101 -GLU- 116 -HIS- 131	102 -ASN- 117 -HIS- 132	103 -PHE- 118 -PHE- 133	104 -ARG- 119 -GLY- 134	105 -LEU 120 -LYS 135
91 LEU- 106 LEU- 121 GLU-	92 HIS- 107 GLY- 122 PHE-	93 CYS- 108 ASN- 123 THR-	94 -ASP- 109 -VAL- 124 -PRO-	95 -LYS 110 -LEU 125 -PRO-	96 -LEU 111 -VAL 126 -VAL	97 -HIS 112 -CYS 127 -GLN	98 -VAL 113 -VAL 128 -ALA	99 -ASP- 114 -LEU- 129 -ALA-	100 -PRO- 115 -ALA- 130 -TYR-	101 -GLU 116 -HIS 131 -GLN	102 -ASN- 117 -HIS- 132 -LYS-	103 -PHE- 118 -PHE- 133 -VAL-	104 -ARG- 119 -GLY- 134 -VAL-	105 -LEU 120 -LYS 135 -ALA
91 LEU- 106 LEU- 121 GLU- 136	92 HIS- 107 GLY- 122 PHE- 137	93 CYS 108 ASN 123 THR 138	94 -ASP- 109 -VAL- 124 -PRO- 139	95 -LYS 110 -LEU 125 -PRO 140	96 -LEU 111 -VAL 126 -VAL 141	97 -HIS 112 -CYS 127 -GLN 142	98 -VAL 113 -VAL 128 -ALA 143	99 -ASP- 114 -LEU- 129 -ALA- 144	100 -PRO 115 -ALA 130 -TYR 145	101 -GLU- 116 -HIS- 131 -GLN- 146	102 -ASN- 117 -HIS- 132 -LYS-	103 -PHE- 118 -PHE- 133 -VAL-	104 -ARG- 119 -GLY- 134 -VAL-	105 -LEU 120 -LYS 135 -ALA

DNA Coding for the Amino-Acid in the sixth position in the β-chain

Normal 5 7 6 **Amino Acid** glu glu pro **DNA Base Composition** GAG GAG CCT Sickle **DNA Base composition** GT GAG CCT G **Amino** Acid glu pro val 5 6 7

1910 1st published report of sickle cell anaemia (Herrick)

1949 Pauling et al : chemical difference between HbA and HbS

1956 Ingram: Fingerprinting βglu → val

SICKLE CELL DISEASE

THE SICKLE CELL TRAIT HOMOZYGOUS SICKLE CELL DISEASE (SS) Sickle cell anaemia

DOUBLY HETEROZYGOUS SICKLE CELL DISEASE Sickle cell / haemoglobin C disease Sickle cell / thalassaemia

PROPERTIES OF HbS

Solubility + Conformational changes - "tactoid formation" - sickled cells → irreversibly sickled cells ↑ mechanical fragility → haemolysis t viscosity - organ infarction

FACTORS AFFECTING SICKLING

- Oxygen tension 50–60 mm Hg for SS 20–30 mm Hg for AS
- pH inhibited at alkaline pH exacerbated by acidification
- **Concentration of HbS**
- Presence of other haemoglobins
 - polymerisation: S > D > C > J = A > F

FACTORS PRECIPITATING CRISES IN SICKLE CELL DISEASE

INFECTIONS (especially malaria)
PYREXIA
EXPOSURE TO COLD
DEHYDRATION
PREGNANCY

HAEMOGLOBIN VARIANTS: GENE DISTRIBUTION

Frequency of sickle cell (Hb S) gene in different regions of Saudi Arabia

CRISES IN SICKLE CELL DISEASE

HYPERHAEMOLYTIC AREGENERATIVE OR APLASTIC SMALL VESSEL OCCLUSION

CLINICAL MANIFESTATIONS OF SICKLE CELL DISEASE

HAEMOLYTIC ANAEMIA TISSUE INFARCTION

Clinical Manifestations in Sickle Anaemia

- Pallor (Anaemia)
- Jaundice & Dark Urine
- Apathy & Anorexia
- Hand-Foot Syndrome (Young Children)
- Splenic sequestration (Young children) Hepatic Sequestration
- Bones and Joints Pain
- Abdominal Pain

Clinical Manifestations in Sickle Anaemia

Recurrent Infections & Chest Symptoms (Acute Chest Syndrome)

- Hepato-Splenomegaly
 (Early Childhood)
 - (Association with Thalassaemias)
- CNS Presentations
- Leg Ulceration
- Skeletal Deformity

Laboratory Diagnosis of Sickle Cell Disease

- Sickle Solubility Test
- Hb Electrophoresis
- Genetic Study

SICKLE CELL SOLUBILITY TEST

Hb ELECTROPHORESIS

Indications for Blood Transfusion in Sickle Cell Anaemia

- Splenic sequestration
- Hepatic sequestration
- Aplastic crisis
- Overwhelming infections
- Elective or emergency surgical operation
- Severe painful crisis associated with severe haemolysis

Indications for exchange transfusion

- Strokes
- Pulmonary infarcts with infection
- Pregnancy (Severe persistent painful crisis)
- Priapism
- Preparation for major surgery

